Imperial College
London

Diorama

A portable web-based platform
for testing distributed algorithms

Submitted in partial fulfilment of the requirements for the degree of
Master of Engineering in Computing of Imperial College London

AUTHOR // MAURICE YAP

SUPERVISOR // DR ANANDHA GOPALAN
MENG COMPUTING INDIVIDUAL PROJECT

Abstract

The study of fault-tolerating distributed algorithms — designed to run on networked
computers (nodes) which communicate with each other only by sending messages — is
common on university computer science courses. Students of distributed algorithms
often implement such distributed algorithms in order to simulate them in a network of

nodesin order to better understand them and to analyse their behaviour and performance.

Many tools exist which allow students to do this, and there are also more involved other
ways to test distributed algorithms such as implementing and running nodes from scratch
in some programming language or setting up networks of Docker containers. However,
such methods can be less than ideal since they may require users to use one particular
language to implement algorithms, require root access to computers which may not be
possible in a classroom or they may require users to spend lots of time learn to use other
technologies which takes time away from learning about the algorithms themselves.

We present the design of Diorama, a browser-based application which facilitates: the
writing of distributed algorithms in the user’s choice of a range of available languages; the
defining of a network topology which can include automatically-generated nodes; and
the simulation of this distributed network. We create a proof-of-concept of Diorama to
demonstrate its value and technical feasibility and publish a deployment tool which can
be used to install and run Diorama from a cloud- or hypervisor-based virtual machine.

Acknowledgements

| would like to thank:

+ my supervisor for this project, Dr Anandha Gopalan, for his excellent advice, guid-
ance and support over the past academic year;

+ my parents for enabling me to come to Imperial College London to study and to
develop, and for their support during this time;

+ those working both on the front line and behind the scenes to continually improve
the teaching, facilities, academic support and student welfare provision of the
Department of Computing;

+ and finally, God, who is exclusively responsible for my academic gifts and abilities.

| also want to express gratitude to the vital financial support | received during my four
years of study from the university’s Imperial Bursary scheme. This funding has been vital
for me and many of my peers to ensure that we minimise our financial burden on our
already-squeezed families. It will continue to be essential in making sure future students
from more economically-deprived backgrounds are not discouraged, for financial reasons,
from coming to this institution to both study and contribute to student life. The Imperial
Bursary scheme is something of which this university should be immensely proud.

Contents

1

Introduction
11 Objectives o e e e
1.2 Contributions e
Distributed Algorithms
2.1 Networktopology
Related Work
3.1 ASimulator for Self-Stabilizing Distributed Algorithms
3.2 JBOESIM . . o e e e e e e e e e e e e
3.3 DSLabs e e
3.4 Containerorchestration: Docker
3.5 Networksimulators: TETCOS NetSim
3.6 Onlineintegrated development environments (IDEs)
3.6.1 Codeanywhere e
3.6.2 Replit. e e
3.7 Serverless/FaaS:AWSLambda o
3.8 Summaryofrelatedwork

Software Design

4.1
4.2

43
4.4

4.5

Overview o i e e
Goals of the softwarepackage
421 Usebyaneducator: Leroy’suserjourney
4.2.2 Usebyalearner: Stacey’suserjourney
Technical representation of concepts in distributed algorithms
Programminginterface
4.41 NodeprogramAPl
4.42 Networktopologyschema.
443 Usereventsinterface.
Webuserinterface
4,51 Mainelements Ll
4.5.2 Programsexplorer L
4.5.3 Programeditor
4.5.4 Networktopologyeditor.

13
16
18
20
22
23
23
24
27

29
29
29
30
32
34
35
35
37
40
43
43
44
44
46

vii

viii

455 Advanced configuration L oL 47

45.6 Simulation L 47
4.6 Concludingremarks 49
Proof-of-concept: Diorama 51
5.1 Aimsforthe proof-of-concept 51
5.2 Overviewofproduct 51
520 Gallery e 52
5.3 Webservicearchitecture o L. 59
5.4 Back-end: implementing programs, nodes and networks with Docker . . 61
5.41 Node program images and containers 61
5.4.2 Networkingnodes 65
5.5 Back-end: Main WebSocketserver 65
5,51 UsingWebSocketmessages 66
5.5.2 Storingdatapersistently oo oL 67
5.5.3 Interacting with Docker Engine 68
5.5.4 Fetchingnodeprogramcode 69
5.5.5 Handling Docker container messages: node logger server 69
5.6 Front-end:Reactweb application 7
5.6.1 Statemanagement. oo 72
5.6.2 Pagerouting e 73
5.6.3 Usereventscheduling T4
5.6.4 Use of selected third-party libraries 76
5.7 Installingand runningDiorama 81
Evaluation 83
6.1 Supported functionality L 83
6.2 Usability. e 85
6.21 Usertesting. e 86
6.2.2 ComparisontodirectlyusingDocker 93
6.2.3 Conclusion e 94
6.3 Portability e 95
6.31 Thewebinterface 95
6.3.2 Theserver e 95
6.3.3 Theinstallationtool 96
6.3.4 Conclusion e 96
6.4 Extensibility e 97
6.41 Nodeprogramruntimes 97
6.4.2 Network topology definition mechanisms 98
6.4.3 Frontendlocalisation, 99
Conclusion 101
71 Futurework L 101

Example network topology code in JSON

Installation guide

B.1
B.2

Pre-made images . . .
ForlocalVMs
B.2.1 Pre-requisites
B.2.2 Deploying. . .

Guide for test users

User testing node programs

User testing notes

E1 “Matt”

E2 “Nick"

E3 “Alan"

E.4 “Gordon"

E5 “Amy"
Bibliography

105

107
107
107
107
108

109

113

115
15
116
n7
n7
nr

119

List of Figures

2.1

2.2
2.3
2.4
2.5
2.6
2.7

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
41

412
413

4.14

A pseudo-code representation of Eager Reliable Broadcast. 5
Anetwork of two connectednodes. o L 6
Aringnetwork 6
Alinenetwork 6
Afully-connectednetwork L 6
Astarnetwork L e 6
Atreenetwork 7
Screenshot from A Simulator for Self-Stabilizing Distributed Algorithms . . . 10
Add connection dialog in A Simulator for Self-Stabilizing Distributed Algorithms 11
Screenshot of JBotSiminaction[16]., 13
ExamplecodetorunJBotSim. oo . 14
CreatinglinksinJBotSim. e 15
Screenshot of the function designer for AWS Lambda [6]. 25
Screenshot of the Amazon Cloudwatch logs for a Lambda function [7]. . . . 25
Screenshot of AWS Lambda’s function code editor[6]. 26
State diagram forasimulatednode. 34
The pseudo-code for our example node program. 36
The Python code for our example node program, using our interface. 37
An example network topology. Lo 4
The YAML example network topology. 42
The timeline of node states generated by our example user events. 43
Wireframe of the main navigational and other fixed elements of the web

application. e 43
Wireframe of the programsviewer. 44
Wireframe of the programeditor. 45
Wireframe of the network topology editor. 46
Wireframes of the graphical topology viewer and the connection parameters

editor. . . . 47
Wireframe of the advanced configurationpage.. 48

Wireframe of the node manager view within the simulation page and the
usereventschedulermodal. o .. 49

Wireframe of the node output logs view within the simulation page. 50

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
51
5.12
5.13
5.14
5.15

5.16
517

5.18
5.19

5.20
5.21

5.22
5.23
5.24
5.25
5.26
5.27

5.28
5.29
5.30

5.31

5.32
5.33
5.34

Thehomepage. i 52

Thedocumentationpage. 53
The user interface preferences modal, where users can select their language

andcolourscheme. 53
The node programsviewer. 54
The node program editor, showing raw codeinput. 54
The network topology editor. 55
The network topology editor with the API Documentation accordion expanded 55
The network connection editormodal. 56
The simulation page, before a simulation has been started. 56
The node manager view on the simulationpage. 57
Theusereventsschedulermodal. 57
The output logs view on the simulationpage. 58
The output logs view on the simulation page with an active filter. 58
A high-level view of the architecture for our web service. 60
A modified code snippet outlining the creation of node program Docker

IMAageS. .« . o o e e e 62
The Dockerfile for our Python 3 node program Docker image. 62
A modified code snippet outlining the creation of node Docker containers’

command-lineargumentlists. o, 63
The simplified post-setup file structure of a Python 3 node program. 63
A modified code snippet illustrating the behaviour of the send () function

ofthe NetworkAdapter. v v i i it ittt ie e 64
The method which assigns IPv4 addresses to node Docker containers. . . . 65
A modified code snippet from the main method of our main server application. 66
Two example WebSocket messages using our format protocol. 66
The WebSocket message parsermethod. 66
A code snippet showing how WebSocket messages are handled. 67
A code snippet showing how a TinyDB is used for storing and retrieving. . . 68
An outline of our docker_interface.py Docker SDK for Python. 68

A code snippet showing how we handle received zip files for user node
programcode. e e e e e e e e 69
A code snippet showing how we retrieve a user’s code for a node program.. 70
An outline of the logicin our node loggerserver. 7
The function which creates the WebSocket connection from the web inter-
face to the main back-end server application, which is executed on initiali-

sation. e 72
An example of our use of Redux with a React component. 73
An outline of the state of our Reduxstore. 74
A code snippet showing how we use React Router. 75

A code snippet showing how we use JavaScript timers to implement sched-
uleduserevents. L e 75

xi

xii

5.35
5.36

5.37
5.38

6.1

6.2
6.3

6.4

The Ace code editor for users to edit their network topology. 76
Code snippets showing how we use Polyglot.js and redux-polyglot for trans-

latinguserinterfacetext. 79
TheDateTime Reactcomponent. 80
The Travis Cl configuration file for the diorama-web-ui project. 82

Suggested workaround for adding and removing connections during the
runningofasimulation. o 84
Suggested change to our network topology API. 92

Anoutline of program runtime constantsin src/components/Programs/constants. js

of diorama-web-ui. 98
A code snippet showing how we parse raw network topology definitions. . 98

List of Tables

3.1 Feature comparison of selected relatedworks. 28

Xiii

Introduction

Distributed computing is an incredibly important and influential area of computer sci-
ence. Itis the study of systems of networked computers which communicate by passing
messages between each other. Such systems include the World Wide Web, wireless sensor
networks [46] and distributed database systems [20]. They commonly utilise distributed
algorithms to perform tasks particular to distributed systems, such as reliably broadcast-
ing data, performing atomic commit operations and achieving consensus across all the
processes operating in a network [45].

Since distributed algorithms are an important concept in computer science, and com-
monly come up in software engineering, they are a popular topic for students to study.
Students studying distributed algorithms will often need to implement and experiment
with specific algorithms to study and observe their behaviour in a real-world context.
Whilst setting up a real network of interconnected physical computers is a naive way
to achieve this, it is impractical in many ways. Instead, a virtual environment simulat-
ing computers in a network, which can be run on a single computer, is often the most
convenient way to test distributed algorithms.

Several network simulator software packages for studying distributed algorithms exist; we
explore one example — TETCOS NetSim — in Section 3.5. Their focus, however, is running
simulations of networks, and as such, they allow for a high degree of configurability for
the networks themselves and the simulation of them; network simulators usually prove
to be too bulky to set up and use for investigating distributed algorithms. This means
that students would need to spend a lot of time setting these up, before they can focus
on testing algorithms.

There are several advantages that virtual simulated networks have over physical test
networks in the study of distributed algorithms:

« No extra physical resources are required, and thus has no extra financial cost for
hardware will be incurred.

« Much less time is needed to deploy a simulated virtual network, both initially, and
when modifications are made.

2

+ Scalability is much better. It is much easier, cheaper and quicker to add extra
computers to a virtual network than it is to a physical network.

+ Making changes to the topology of the network (which computers are directly
connected to which others - the shape of the network) is also much easier and
quicker.

Another good way for students to test distributed algorithms is to create bespoke networks
of containers or virtual machines, for example, Docker (Section 3.4). However, this has
a high setup time cost and it is difficult to configure more complex network topologies.
Docker is also a very powerful technology, and therefore has a steep learning curve for
beginners. Again, this has the practical pitfall of being time-consuming and so is an
inefficient method for students to learn about algorithms. Another practical problem
with using Docker is that it requires root permissions on the host machine - something
that may not be possible for students using shared laboratory machines.

1.1 Objectives

The primary aim of the project is to create a software package for testing out distributed
algorithms, optimised for use by students. This means that a minimum solution should:

+ Allow the user to configure their own network topology to simulate, that is, to
program nodes and define how they are connected to each other.

« Simultaneously run all the nodes in their network to simulate its operation, and
provide an interface to observe the output of all running nodes in real-time.

+ Besimple and quick to set up and learn to use.

We want our solution to be portable - either easy to install on a wide range of platforms,
or, avoiding installation difficulties altogether, hosted remotely on an external web server.
We can draw inspiration from online IDEs, such as Repl.it [55], CodeSandbox [13] and
Codeanywhere [19], which allow users to write and run code in a browser environment,
and thus requiring no software installation whatsoever. A key advantage with their ap-
proach is that these services can be run on any machine with a modern web browser.

There exist several common network topologies, such as fully-connected, line and star.
The solution should support defining topologies based on, or including such topologies.

Chapter1 |Introduction

1.2 Contributions

This project contributes Diorama, a software application which can be used by students
and educators, like lecturers and laboratory demonstrators to study distributed algo-
rithms through simulating them. We present in Chapter 4 the design of powerful and
usable programming interfaces for (1) coding distributed algorithms in the form of node
programs and (2) defining network topologies, which includes the capacity to automati-
cally generate nodes and connections for common network topology shapes. We also
present the design of a usability-focused web user interface for Diorama. We then create
a working implementation of this design, which we describe in detail in Chapter 5.

1.2 Contributions

Distributed Algorithms

Distributed algorithms are algorithms which are designed to simultaneously run on
multiple independent processes, or nodes, each with their own local memory and clock.
Nodes communicate and share information with other nodes in the system only by passing
messages to each other. These algorithms do not assume the existence of a central
coordinator [37], and typically are designed to tolerate failure of communication channels
and other nodes (faults).

Asimple example of adistributed algorithm is Eager Reliable Broadcast, which re-broadcasts
every message which the node delivers. It ensures that every message which is delivered
by a correct node, that is one which is not crashed, is also delivered by every correct node
[21, slide 25]. We provide pseudo-code to illustrate this in Figure 2.1 [53, slide 18].

On start:
set delivered to {}

On broadcast message:
send message to all connected nodes except self
deliver message
set delivered to (delivered union {message})

On receive message from sender:
if delivered doesn’t contain message:
send message to all connected nodes except self and sender
deliver message
set delivered to (delivered union {message})

Figure 2.1.: A pseudo-code representation of Eager Reliable Broadcast.

2.1 Network topology

The logical topology, or shape, of a distributed network, on which distributed algorithms
would be run, can be modelled by a graph. Nodes each represent an independent process
(node), and edges each represent a communication channel through which two nodes
can pass messages to communicate [48]. For example, Figure 2.2 shows a very simple
network topology, involving two nodes which are connected to each other.

There exist several common shapes of network topology in the study of distributed
networks, which we illustrate in Figures 2.3,2.4,2.5,2.6 and 2.7.

6

/

Figure 2.2.: A network of two connected nodes.

o,

Figure 2.3.: Aring network topology with six nodes.

3

Figure 2.4.: A line network topology with four nodes.

g

Figure 2.5.: A fully-connected network topology with six nodes. All nodes are connected to each
other. Logically, this is equivalent to a bus network in physical networking.

Figure 2.6.: A star topology with a hub (purple) and six hosts (black).

Chapter 2 Distributed Algorithms

Figure 2.7.: A tree, or hierarchical, topology with three layers, and where non-leaf nodes each
have two child nodes.

2.1 Network topology

Related Work

We consider in this chapter examples of existing possible solutions for testing distributed
algorithms, along with other relevant software packages and services. We analyse their
suitability for this testing distributed algorithms and identify features they have which
could be applied to our design.

3.1 ASimulator for Self-Stabilizing Distributed
Algorithms

Self-stabilising distributed algorithms work with nodes in a network, which each have one
or more values. From any starting state (a configuration of these values in the network),
running such an algorithm will cause the network to reach an allowed, or correct, state
after a finite number of steps [31, p.97].

A Simulator for Self-Stabilizing Distributed Algorithms is a distributed algorithm simula-
tor, created for the final BSc degree project of Oded Har-Tal [38]. It can be used to run
user-defined algorithms written in Java (specifically, Java 1.1), focusing particularly on
experimenting with self-stabilising distributed algorithms to understand their behaviour.
Har-Tal’s design enables users to:

+ Simulate and observe the impact of different types of failures, including failed
nodes and imperfect (failed or delayed) connections between nodes.

+ Prove correctness of an algorithm by showing that it converges to a correct state.
+ Observe the behaviour of algorithms across networks with different topologies.

The simulator displays a network in a visual graph representation (see Section 2.1). Each
node’s values can be inspected while an algorithm is running, and as well as this, a debug
log is provided at the bottom of the window, where users can print messages.

10

&3 Distributed Algorithm Simulator B -0 x|
File View Processor Network Run Log Help

Processor Inspector [x|
Processor ID m

@ Algorithm: BFS
Watch Field: [urs |

Watch Value: |2

@ @ o —

PrOcessor uo : 4 running 5|

processor no ;3 running
r

Figure 3.1.: Screenshot from A Simulator for Self-Stabilizing Distributed Algorithms [39, slide 12].

i

processor no ;1 running
processor no ;0 running

Programming model

Each node uses a do-forever loop and is run as a separate thread, taking advantage
of Java’s thread management capabilities to ensure complete isolation between each
node’s computation — an important principle in distributed algorithms. To implement an
algorithm, the user must define the behaviour of the algorithm in a single iteration of this
loop, as well as any initialisation tasks by extending the provided Processor abstract
class and implementing the abstract methods:

e void initialize ()

« void singleStep ()

Property values can also be added to each node, by creating objects which implement

the given Property interface, then adding these to the properties field of the node
(properties.addProperty (Property property, String propertyName)).
The Property interface requires two methods to be implemented:

« void setValue (String value)

e String getValue ()

Four concrete APl methods in the Processor class are provided to the user to commu-
nicate between other nodes and to output information to the debug log:

+ void send(int i, Object data) -sendsdata, an instance of any Java
object, to the node’s i ™" neighbour.

+ void sendAll (Object data) -sendsdata to all the node’s neighbours.

« Object receive (int i) -receivesdatafrom the node’s it" neighbour.

Chapter3 Related Work

+ void PrintMessege (String msg) - prints msg to the debug log.

Defining the network topology

The user must first create nodes, known as Processors, loading each with a compiled algo-
rithm which they have implemented. Each node appears in the graphical user interface
as a circle, inside which are its ID number (assigned dynamically by the simulator), the
name of the node’s first property and its initial value. The property displayed in the circle
can be changed by using the Processor Inspector window, which can be seen on the right
of Figure 3.1. The Processor Inspector window is opened through the View menu in the
menu bar.

&3 Distributed Algorithm Simulator

File View Processor Network Run Log Help

|o
Lbfs
Add Connection [X]
Insert Processors to connect
1 Source Destenation
0
— [[
bfs
Cancel I 0K
z 3
0 0
L-bfs L-bfs

Addind commection 2 -0 =
Addind connection 2 -1
Addind connection 3 -0
=

Addind connection 3
Addind connection 3 -2

-
q y

Figure 3.2.: The Add Connection dialog in A Simulator for Self-Stabilizing Distributed Algorithms
[38].

The user can create connections between nodes by opening the Add Connection dialog
window from the Network menu in the menu bar and then entering the id numbers of the
two nodes to connect. We show this in Figure 3.2.

Useful features

Using this simulator, the user is able to send any Java object from one node to another.
This makes it convenient for the user to use this simulator for algorithms where nodes
communicate with each other using more complex data types, as opposed to simply
strings or integers, for example. This is because the user does not need to encode complex
data types before sending and then decode it when receiving. This feature does however
mean that it is the responsibility of the user’s node implementations to perform type-
casting when receiving data.

3.1 ASimulator for Self-Stabilizing Distributed Algorithms

n

12

This simulator also provides the ability to easily change things at runtime, when the
simulation is running. This allows the user more freedom when experimenting with
a distributed network and distributed algorithms. While a simulation is running and
without needing to restart the simulation, the user is able to:

+ load an existing node with a different algorithm.

+ change the network topology by adding new and removing existing connections
between nodes.

« add and remove nodes.

Drawbacks

One significant limitation of A Simulator for Self-Stabilizing Distributed Algorithms is that it
only supports up to eleven simulated nodes. This makes it unsuitable for use with larger
networks.

This software package is written entirely in Java, and users also implement algorithms
using Java. Whilst this presents many advantages, such as the fact that users can take
advantage of features from the entire Java language, a key disadvantage is that if someone
wants to use this software, they must use Java. Users who do not already know Java must
spend time learning the language, and some algorithms may be more difficult to write in
Java, instead being more suited to languages with other features.

Takeaways

We should include a visual representation of the user’s network topology as a graph,
showing all nodes and connections as they are added.

We should provide a simple programming interface for the user, which is intuitive to
use with as little time required to learn as possible. This should include APl methods
for communicating with other nodes and outputting strings to the log in our simulation
viewer for debugging and other purposes as desired by the user.

There should be a high, or no, limit to the number of simulated nodes that our solu-
tion can support, so that distributed algorithms can be investigated over large network
topologies.

Chapter3 Related Work

Diorama should allow the user to perform modifications to their simulated network and
nodes without having to restart the entire simulation. This could include adding and
removing nodes, changing the program running on a node and modifying connections
between nodes in the network.

Diorama should support the use of different types of programming languages for writing
distributed algorithms to be run on nodes, for example, functional, imperative and object-
oriented. Ultimately, it should be easy to generalise our solution to be theoretically
completely language-agnostic.

The flexibility with sending different kinds of data structures between nodes is some-
thing we should strive to replicate, however, a solution which is language-agnostic will in-
evitably require some form of decoding and encoding of data in users’ programs. Nonethe-
less, Diorama should use a message format that is as generic as possible and can easily
be processed in most languages.

3.2 JBotSim

Figure 3.3.: Screenshot of JBotSim in action [16].

JBotSim is a Java library for simulating distributed algorithms in dynamic networks [16,
18]. It provides an interactive graphical interface and allows users to use create and
simulate distributed networks using their own topology and node programs, which we
show in Figure 3.3. JBotSim allows users to cause changes and actions in their network
while nodes are running simulations by triggering the execution of some code on a node
when it is clicked. JBotSim uses a network model which is better at modelling a real-life
situation than many other distributed algorithm simulators, incorporating factors such
as two- or three-directional positioning of nodes, wireless and wired connections, and
directional wireless broadcasting of messages.

3.2 JBotSim

13

0 ~NOoO U WN

= —
o 2o

14

Running a simulation

import io.jbotsim.core.Topology;
import io.jbotsim.ui.JViewer;

public class Main{
public static void main(String[] args) {
Topology tp = new Topology();
tp.setDefaultNodeModel (EmptyNode.class) ;
tp.setTimeUnit (500) ;
new JViewer (tp);
tp.start ();

Figure 3.4.: Example code to run JBotSim [18].

As we show in Figure 3.4, JBotSim is run by instantiating the Jviewer Java object (line
9), passing it a Topology object (lines 6 and 9), and then callingits start () method
(line10). Line 8 uses the Topology.setTimeUnit () method to make each time slice
last 500ms. This can be done so that the graphical viewer displays changes at a pace
which a user can easily follow.

Node Programming model

JBotSim uses an event-driven asynchronous programming model for node algorithms.
All nodes are run on a single thread, coordinated by a central clock. Users implement
distributed algorithms by extending the provided Node class and overriding the event
handler methods:

+ void onStart () - executed oninitialisation.

« void onSelection () - executed when the node is selected (clicked on) in the
graphical user interface.

« void onClock () - executed on each clock tick.

+ void onMessage (Message message) -executed whenamessageisreceived.

The Node class provides the user with a large list of library methods, all well-documented
in the Javadoc for JBotSim [17]. These include getters for many pieces of data, such as

its neighbours and its colour, as well as methods to send messages, enable or disable
wireless connections and move around the environment’s virtual space.

Defining the network topology

Nodes can communicate using two types of connections, called “links”: wired, which
pass messages between two nodes no matter how far apart they are; and wireless, which

Chapter3 Related Work

o ~NOoOUbhWN 2

—_ = =
O, WN S O

pass messages between two nodes so long as the receiver is within the communication
range of the sender. Links are implemented as directed, meaning if node alice can send
messages to node bob, bob cannot necessarily send messages back to alice, given the
distance between them is not a limiting factor. However, users have the option of making
links either directed or undirected (which is simply an abstraction of two directed links
going between two nodes in opposite directions).

Topology tp = new Topology () ;

Node alice = new Node();

Node bob = new Node();

Node charlie = new Node();

Node dorothy = new Node();

Node eric = new Node () ;

tp.addNode (100, 100, alice);

tp.addNode (200, 100, bob);

tp.addNode (300, 100, charlie);

tp.addNode (400, 100, dorothy);

tp.addNode (500, 100, eric);

Link ab = new Link (alice, bob);

Link bc = new Link (bob, charlie, Link.Mode.WIRELESS) ;
Link cd = new Link (charlie, doris, Link.Type.UNDIRECTED);
Link de = new Link (doris, eric, Link.Type.DIRECTED, Link.Mode.WIRED) ;
tp.addLink (1link) ;

Figure 3.5.: Creating links in JBotSim.

Users create links in the network by instantiating I.i nk objects, and then adding them to
the Topology. The Link constructor takes two required arguments — from and to,
both of the type, Node, followed by, optionally, the type (directed or undirected) of the
link, and then, also optionally, the mode of the link (wired or wireless). In Figure 3.5, we
show an example of this we have four nodes, alice, bob, chalie, doris and eric, arranged in
a horizontal line 100 units apart from each other, connected in a line topology.

Useful features

The ability to interact with nodes live, as they are running, is a useful feature which
gives users a very simple way to trigger specific events, namely the execution of the
code inthe onSelection () handler method. One of the examples of its use which
the documentation gives is sending a message to trigger a broadcast throughout the
network. The handler could be used to trigger various different situations, such as a
network partition.

JBotSim also provides a very useful visualisation feature, in that users can make nodes
change colour in the visualiser. This is great for visualising when certain things have
happened in the network, for example, receiving a full set of messages.

3.2 JBotSim

15

16

The (currently incomplete) documentation on the project website [18] is quite extensive
and provides full well-explained concrete examples, which are very helpful to readers
and users trying to understand how to use the software package.

Drawbacks

JBotSim does not provide any way for nodes to print text onto the user interface, but
users can use Java’s System.out .print 1n method to print to the console. Whilst
this does work in that users are able to access this data, it is much less than ideal, since in
order to obtain metadata into output messages, such as the node which printed it, users
must manually put this into the content of their debug message.

Takeaways

Since one of our objectives is to create something which is easy to use for students of
various levels of skill, knowledge and experience, good documentation is a key priority for
Diorama. JBotSim demonstrates the effectiveness of including concrete code examples,
accompanied by good, clear and concise explanations of it. We will accordingly make
sure to include well-annotated concrete examples of code in our user documentation.

We will also display standard output from nodes in our interface in a way that users can
view metadata about each line of output, including which node it was output from, and
the time when it was outputted.

3.3 DSLabs

DSLabs is a framework for writing, simulating and testing distributed algorithms, devel-
oped at the University of Washington by Michael et al. [50, 49]. It is accompanied by an
interactive visual debugger called Oddity [72], a graphical interface which users can use
to inspect and manipulate their simulations of distributed networks with nodes running
programs they have written.

The primary focus of DSLabs’ functionality is very specific: to help users easily identify
and fix bugs in their own distributed algorithm implementations. This makes sure that
they meet their intended specifications under all possible faults and variations that could
occur in a distributed network: delayed, dropped, duplicated and reordered messages. It
does this through optimised execution-based and model checking tests.

Chapter3 Related Work

Another stated goal for DSLabs was to be an accessible framework which is useful to
novice programmers, so that users “can spend more of their time focusing on the subject
material”, as opposed to using the framework itself. We share this goal for Diorama.

Programming model

Users are presented with an asynchronous Java programming interface for nodes. Writing
a node program involves extending the provided Node abstract class, and implementing
three event handlers in the form of abstract methods:

« void init () - executed on initialisation.

« void handleMessage (Message message, Address sender) -executed

when a message is received.

¢« void onTimer (Timer timer) -executed when atimerisreceived.

The interface also provides users with three API methods which they can use in their
code:

+ void send(Message message, Address to) -sendsmessageto to.

e void set (Timer timer, int duration) -schedulestimer tobere-delivered

to itself after durat ion milliseconds.

e void set (Timer timer, int minDuration, int maxDuration) -sched-

ules t imer to be re-delivered to itself after some time between minDuration
and minDuration milliseconds, chosen uniformly at random.

Nodes each run as a single-threaded event loop, so that the DSLabs model checker can
explore the possible executions of its code using the coarsest granularity possible.

Takeaways

The creators of DSLabs used the application for teaching a class, by setting students a
series of assignments using it to create a dynamically-sharded key-value store, which
is correct, fault-tolerant and linearisable. Through this, they gained valuable feedback
about the effectiveness and usability of DSLabs. Although due to timescales, it would
almost certainly not be possible to replicate this in our project, part of our evaluation of
Diorama, and of obtaining feedback to drive improvements, should be to have people,
who are representative of its intended user-base, test it out with real tasks.

We learn from Michael et al. [50] that the Oddity network visualiser proved to be very
helpful to students in helping to eliminate bugs in their code. While this is not directly

3.3 DSLabs

17

applicable to Diorama, it does indicate that visualisations are helpful to users. Providing a
graphical viewer to Diorama’s users as they define their network topology in code would
be useful.

3.4 Container orchestration: Docker

Containers, such as those provided by Docker [28], are lightweight and self-contained
applications which provide the functionality of an operating system in which user pro-
grams run. Docker uses container images — executable files which become containers
when they are run on Docker Engine, Docker’s container engine. Images can be reused,
allowing for multiple containers with the same program to be run simultaneously [29].
Docker Engine runs on Windows and Linux, and it is also included within Docker Desktop,
which can be run on Windows and macOS [12]. Images can also be used across different
platforms. Users interact with Docker Engine through its command-line interface and
a RESTful API served over HTTP is available, with official SDKs in Go and Python and
unofficial community libraries in many other popular languages [24].

Docker Compose is a tool for managing the running of such containers, which includes

defining which images to use, how many containers to spin up and how containers are net-

worked together. Users can configure an orchestration by declaringitinadocker—compose . yml
ordocker—compose. json file [30, 36].

Drawbacks

Docker Compose provides a very powerful and rich API for orchestrating containers. Its
complexity, however, means that users must spend a significant amount of time and
effort learning how to use it in order to write JSON or YAML configuration files to model
networks through orchestrating Docker containers. These configuration files can also be
long and complex to write for larger networks.

There are four network drivers provided out-of-the-box for networking Docker containers
[26]:

+ Bridge - all containers running on the same Docker host and connected to the
same bridge network can communicate with each other; however a container
cannot communicate with (and are therefore isolated from) containers which are
not connected to its bridge network.

+ Host - containers use their hosts’ networking directly. The network isolation be-
tween containers and their host is removed.

18 Chapter3 Related Work

+ Overlay - multiple Docker hosts are connected together, allowing containers running
on different hosts to communicate with each other.

+ Macvlan - containers are each given a MAC address and connect directly to their
host’s physical network.

Since these drivers all create connections between every container in the same network,
they do not, by default, support the creation of complex network topologies, such as
aring network. In fact, they all facilitate a fully-connected network topology, which is
illustrated in Figure 2.5.

Additionally, whilst Docker can create networks for containers to communicate with
each other over TCP or UDP, it is the responsibility of the application running in each
container to implement the sending of messages to other containers on the network via
these channels. In a context where Docker is used by students for testing distributed
algorithms, this means that the student must implement this themselves. Whilst in
higher-level languages, such as Python and Elixir, this is relatively straightforward [34],
this is nonetheless additional work which does not directly benefit the investigation and
understanding of algorithms.

Useful features

Being able to view the outputs of nodes in a network is important for analysing distributed
algorithms, and having fine control over this, such as filtering and simultaneously viewing
outputs from a selection of nodes, is very useful. Docker provides a very simple way
to view the output of each container (logging) through a command-line interface. To
view to outputs of multiple containers simultaneously, a simple command can be used if
they were started using Docker Compose. Otherwise, this can be done using command-
line utilities, or simply by opening multiple command-line windows [27]. Though this
is powerful, it is partly reliant on the user having a good command of their operating
system’s command line. However for students who do not have a strong computing
background, this may not be something they have.

Since Docker provides clear and extensive online documentation on how to do so [23], it
is relatively straightforward for a user to create Docker images around their own programs
to simulate nodes. Creating and running containers from these images (“spinning-up”
containers) is very quick, and a very large number of containers can be run on a single
Docker host running on an ordinary laptop [47]. This is useful to experiment with large
networks to see how distributed algorithms behave when run at a large scale. Because
Docker containers are built using layers of images, a user making a change to their program
does not require the entire container image to be rebuilt, as only the top image layer will

3.4 Container orchestration: Docker

19

20

have been modified [22]. This makes it very quick for a user to make small changes to
the code of their program and quickly re-run it without re-configuring any underlying
support, such as networking.

Because Docker containers provide the functionality of a fully-fledged operating system, it
is possible to use practically any programming language and platform to write programs
to be runin one. The absence of a constraint on programming language is beneficial to
students writing programs to simulate nodes, since they can choose, for example, the
language they are most comfortable with, or the language most suited to the nature of
their program. It is also possible to use different languages for different nodes.

Docker containers can each be stopped or paused (which allows them to later be resumed)
[23]. This is useful for studying distributed algorithms, as it is a simple way to simulate a
faulty or crashed node.

Takeaways

Diorama should provide a way to easily define common and more complex network
topologies through a streamlined configuration API, or perhaps through a graphical
interface.

We should give the user an interface to view the outputs of nodes, including the ability
to simultaneously view a selection of nodes, filtering of output messages, and perhaps
basic data analytics.

3.5 Network simulators: TETCOS NetSim

NetSim is a network simulation Windows software application designed for research and
development of networks, and designing and testing new protocols. The product is aimed
at both industry and education. In industry, NetSim is used by firms in sectors including
defence, aerospace and public transport. It is also used for teaching in the curricula of
over 100 universities, mainly in India, but also across 14 other countries [66]. NetSim is
used in areas of research which include Internet of Things, mobile phone networks and
wireless sensor networks [67].

NetSim supports designing network topologies through its GUI or XML config files and
provides an animated visualised simulation, showing the flow of packets. Users are able
to develop their own algorithms for nodes using NetSim’s C API, although several existing
algorithms are also given and can be modified. There are also extensive facilities for
debugging. NetSim includes features for statistical and objective analysis at all levels of

Chapter3 Related Work

the network, such as built-in production of charts, graphs and tables, and integration
with MATLAB, Wirehark and SUMO [66].

Drawbacks

Whilst as a network simulator, the purpose of NetSim is very close to ours of providing a
service to test and simulate distributed algorithms, it has a few significant drawbacks to
being used for this purpose.

Firstly, its focus towards simulating real-world networking means that using the low-level
language, C, for users to develop their own algorithms is entirely appropriate. However,
this is generally not a good choice of programming language for quickly prototyping
distributed algorithms to see how they run. Performance is less of an issue, and benefits
of using higher-level languages like Python, Ruby or Elixir, namely requiring fewer lines
of code to express the same algorithm, far outweighs any performance benefits of using
C.

As well as this, the focus towards real-world networking means that NetSim allows for
and requires lots of configuration irrelevant to and unnecessary for testing distributed
algorithms. We are not concerned with the network below the application layer when
testing distributed algorithms, but NetSim provides configurability for all layers below
this. This means that the set up process is long and bulky, again taking up time which
could otherwise be spent on the algorithms themselves.

Away from the technical side, NetSim also has two minor practical downsides. It is only
available as a Windows desktop application, which means Linux and macOS users must
use workarounds. NetSim is also large in size, since it includes a vast array of features
which are very useful for network research and development, but not so for distributed
algorithms. For users, this is a redundant use of disk space and processing power.

Useful features

NetSim is a fully self-contained software application which has a single straightforward
installation process. This makes it easy and quick for users to install.

A rich graphical user interface, as opposed to a command-line interface reduces the
barrier to entry for users, especially those with less experience or confidence using the
command line. However, NetSim mitigates the potential drawback of a GUI being too
limiting, by also allowing users to write or generate their own network topologies in the
form of declarative XML files.

3.5 Network simulators: TETCOS NetSim

21

The APIfor NetSim’s algorithm development environment is very usable and well-documented.

Takeaways

We should strive to make Diorama support one or more higher-level and popular pro-
gramming languages, and abstract away (or hide by default) non-essential configuration
variables as much as possible to minimise setup time. Another good but less important
aim is to make our solution cross-platform.

Diorama should have a straightforward or easy-to-follow installation process to minimise
setup time and effort. We should also create an easily-navigable and self-explanatory
interface, but provide more advanced users with deep functionality and configurability.

Our API should be well-documented and usable, built with strong software engineering
best-practices.

3.6 Online integrated development environments
(IDEs)

We explore two web-based programming environments, which although not designed
nor usually used, for simulating networks or distributed algorithms, provide us with
some useful ideas for our approach to designing Diorama. In recent years, with the
continued increase in popularity of mobile working, many such services have appeared
and become more developed. We select two popularonline IDEs to look at: Codeanywhere
and Repl.it.

Online IDEs are web services, hosted on the internet (“in the cloud”) and accessed through
a web browser, which seek to provide developers with all the tools they need to work
on developing applications. They typically incorporate a code editor, a compiler or in-
terpreter, and sometimes, a debugger, all of which are accessed through a web user
interface. The main overarching benefit of online IDEs over desktop-based environment
is their accessibility. Online IDEs typically only require a modern web browser and a
(reliable) internet connection, and can therefore be used on practically any device, on any
operating system and anywhere in the world. There are, of course, many other benefits
which we will discuss.

22 Chapter3 Related Work

3.6.1 Codeanywhere

Codeanywhere provides users with CentOS and Ubuntu Linux containers to use for devel-
oping their own applications [19]. These containers are provisioned, hosted and managed
by Codeanywhere, and can be accessed through its web interface, which includes a ter-
minal console, which connects to the container through SSH, as well as a feature-rich
browser-based code editor for writing code on these containers.

As well as interaction through the web interface, Codeanywhere allows users to access
their containers directly through SSH and SFTP, without going through their browser. This
is useful for developers who want a more lightweight setup, or who simply want to use
their own IDE or text editor program.

Codeanywhere provides users with several predefined common development environ-
ments with relevant software pre-installed to compile and run code, and to manage and
install dependencies. These include PHP (LAMP stack), NodeJS (including yarn and npm)
and Python. This helps users to start coding and developing their applications quickly
with minimal setup.

Another useful feature of Codeanywhere is that its containers can import code directly
from file hosting services, such as Dropbox and Google Drive, and code repository services,
including GitHub and BitBucket. This gives users more freedom and means that they can
deploy code without writing it on, or manually copying it over to their container.

In the same way as many online document editors, such as Google Docs, users of Codeany-
where are able to share their code, as well as collaborate with others in real-time over the
internet. Codeanywhere allows users to generate links to a file, folder or even an entire
project, which can be shared with anyone.

3.6.2 Repl.it

Repl.it provides users with environments to run projects in a range of runtimes. Like
Codeanywhere, Repl.it provides a rich code editor, collaboration (which they call “Mul-
tiplayer”) and sharing projects using links. It is however much more restrictive in that
it does not allow users to access the underlying operating system in which their code is
running.

In addition to these environments, Repl.it has a feature called Classrooms — a platform
for educators to create “classroom” environments, which they can invite students to. It
allows for collaboration between teachers and students and also provides the ability to
track progress and automatically grade students’ code using automated tests.

3.6 Online integrated development environments (IDEs)

23

24

Another feature of node is that Repl.it enables users to embed projects into web pages,
so that visitors to a web page can view, edit and run the live code.

Evaluation of online IDEs

One of the most prominent drawbacks to using cloud-hosted IDEs, as with any cloud-
hosted web service, is that it requires a constantinternet connection. Whilstin a classroom
environment, where there is, for example, good wired connections and wireless internet
coverage, it can be a problem when travelling, or in places where internet access is not
reliable.

Another consideration which users must make when using online IDEs is performance.
The speed of code compilation and execution is entirely dependent on the IDE provider,
since these tasks are all run on the provider’s machines and environments. Whether or
not performance is a positive or negative thing for an online IDE user depends entirely
on whether or not the alternative available to them is more powerful. A key benefit of
using online IDEs is that they can be used on devices regardless of performance, since the
only processing required is to run and display the web application for the user interface.
It means that mobile devices and low-cost machines are no less suitable than high-
performance ones. Another benefit of thisis that users can easily switch physical machines
and seamlessly continue developing with the same code and environment as before.

Related to this is that project dependencies like external and third-party libraries are
taken care of and installed onto cloud environments and not the user’s local machine.
This not only means that they save disk space on their machine by not reeding to install
these, it also means it is much quicker and easier to get started with developing, since
they do not need to install any tools or runtime environments to compile or run their
code. Users can literally log in and start developing straight away.

3.7 Serverless/FaaS: AWS Lambda

We take a brief look at AWS Lambda [8], an example of an online function-as-a-service
(FaaS), or so-called serverless, offering, since we can learn and apply principles from it
when designing Diorama’s interface for users to code programs for their nodes.

AWS Lambda is an event-driven platform provided by Amazon Web Services (AWS). Es-
sentially, it runs, or invokes, a user-programmed handler when triggered by some event.
These triggers, determined by the user on the screen shown in Figure 3.6, can include
HTTP requests, timers and events on other AWS services. A Lambda function is a combina-
tion of one or multiple triggers, and a handler.

Chapter3 Related Work

ai‘//s«, Services v Resource Groups v * Q Maurice Lee Chin Yap ¥ Ireland ¥ Support v
= Lambda Functions generator ARN - arn:aws:lambda:eu-west-1:882482748234:function:generator
generator [Throttle ‘ | Qualifiers v l [Actions ¥ | v
Configuration Monitoring

v Designer

CloudWatch Logs

CodeCommit generator

Cognito Sync Trigger <> Layers 0)

Z ©
DynamoDB

)] AP! Gateway Amazon CloudWatch Logs
Kinesis
S3 Add triggers from the list on the left Resources that the function's role has access to
appear here

SNS
SQs

Figure 3.6.: Screenshot of the function designer for AWS Lambda [6].

Users create a Lambda function handler by writing a method which takes two arguments:
event, which contains data about the event which triggered the invocation of the func-
tion; and context, which contains data about the runtime of the function. The return
value is passed back to the trigger where this is relevant, for example, if a Lambda function
isinvoked due to a HTTP request, the value it returns is its response. AWS provides very
extensive and detailed documentation for creating Lambda functions and their handlers
[9].

awg Services v Resource Groups v * Q Maurice Lee Chin Yap ¥ Ireland v Support ¥
CloudWatch CloudWatch > Log Groups > I ChristChurchN\ i > 2019/05/05/[$LATEST]d887f5de99eb4395a5dfcc5d08bb5b54
Dashboards Expandall @ Row Tt | 2 | % | @
Alarms 4

ter events all 2019-05-04 (23:18:08) ~

OK o Time (UTC +00:00) Message
Billing
2019-05-05
Events > 23:16:06 START Requestld: 9362c40e-51e4-4688-945d-6{629aaag27f Version: $LATEST
Rules » 23:16:06 {u'session': {u'new": True, u'sessionld': u‘amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9', u'user': {u'us
Event Buses > 23:16:06 EVENT OBJECT:
» 23:16:06 {"session": {"new": true, "sessionld": "amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9", "user": {"userld'
| Logs > 23:16:06 END Requestld: 93e2c40e-51e4-4688-945d-6{629aaa927f
Insights » 23:16:06 REPORT Requestld: 51e4-4688-945d: 7f Duration: 0.49 ms Billed Duration: 100 ms Memory Size: 12¢
Metrics > 23:16:21 START Requestld: f30f5baa-50c8-4c72-a332-5ed5058¢ef1ee Version: $LATEST
> 23:16:21 {u'session': {u'new": False, u'sessionld': u'amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9', u'user': {u'u
Favorites > 23:16:21 EVENT OBJECT:
> 23:16:21 {"session": {"new": false, "sessionld": "amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9", "user": {"userlc
© Add a dashboard » 23:16:27 END Requestld: f30f5baa-50c8-4¢72-a332-5ed5058ef1ee
> 23:16:27 REPORT Requestld: f30f5baa-50c8-4¢72-a332-5ed5058ef1ee Duration: 6003.33 ms Billed Duration: 6000 ms Memory Size
» 23:16:27 2019-05-05T23:16:27.285Z f30f5baa-50c8-4¢72-a332-5ed5058ef1ee Task timed out after 6.00 seconds
» 23:16:28 START R b30cadeb-fba5-4f1c-bc89 Version: $LATEST
» 23:16:28 {u'session': {u'new": False, u'sessionld': u'amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9', u'user': {u'u
» 23:16:28 EVENT OBJECT:
» 23:16:28 {"session": {"new": false, "sessionld": "amzn1.echo-api.session.5e2c20c0-aba9-4fb4-a8b0-a2a7437fc2b9", "user": {"userlc
» 23:16:28 END Requestld: b-fba5-4f1c-bc89-
> 23:16:28 REPORT Requestld: b30ca4eb-fba5-4f1c-bc89-c8e2a8883fa5 Duration: 8.23 ms Billed Duration: 100 ms Memory Size: 128
> 23:17:02 START Requestld: cf5f41bb-b8da-4820-b475-7b55b255¢cee2 Version: $LATEST
> 23:17:02 {u'session": {u'new": True, u'sessionld': u'amzn1.echo-api.session.6690b315-eddd-4e33-8b7b-6f57e177e44b', u'user': {u'u
> 23:17:02 EVENT OBJECT:
L 024700 Peaccinnts Mnawt: fria leacsinnldl: Iamsn anha_ani cacsinn RRONKA1R_addd 1622 Rh7h AFR7a177aAAh! Miearl: [Micarls

Figure 3.7.: Screenshot of the Amazon Cloudwatch logs for a Lambda function [7].

Data written to the standard output by Lambda function handlers is made available to
users in logs in Amazon CloudWatch, the cloud resource monitoring service provided by

3.7 Serverless/FaaS: AWS Lambda

25

26

AWS. We show this in Figure 3.7, where we can also see filtering capabilities provided to
the user. The user can search for log messages containing a certain string, or filter by the
date and time at which a message was generated.

aW% Services v Resource Groups v * Q Maurice Lee Chin Yap ¥ N. Virginia ¥ Support ¥

mock“_l Throttle H Qualifiers ¥ H Actions V¥ ’ Demo v

Function code info

Code entry type Runtime Handler Info

Edit code inline v Python 2.7 v lambda_main.lambda_ha

~ File Edit Find View Go Tools Window b o]
= » hardet-3.0.4.dist-ipf)]
S charde ' 41'3‘3 B config.py X lambda_main.py x
13 4 dateutil
s N e 1 [rom config import Config
H 2 from listener import get_recent_tweets_within_interval
i} 4 idna-2.6.dist-info 3 from spongebob_mocking import generate_spongebob_mocking

> oauthlib 4 from tweeter import post_tweet

5
4 oauthlib-2.0.6.dist-info 6
4 python_dateutil-2.6.1.dis 7 def lambda_handler(event, context):
o 8 config = Config(Q)
4 YAML-3.12.egg-info
g &2 9 original_tweets = get_recent_tweets_within_interval(config)

4 requests 10

> requests-2.18.4.dist-info 11 if not original_tweets:

> requests_oauthlib g getiny

»> requests_oauthlib-0.8.0.¢ 14 new_tweets = [generate_spongebob_mocking(tweet) for tweet in of

> six-1.11.0.dist-info 12 map(lambda t: post_tweet(config, t), new_tweets)

1
4 urllib3
4 urllib3-1.22.dist-info

Figure 3.8.: Screenshot of AWS Lambda’s function code editor [6].

We show the Lambda function code editor in Figure 3.8. Here, users provide three pa-
rameters for their Lambda function handler. The first, Code entry type, is the source from
which the code for the handler is obtained from, and has three options: the contents of
the in-browser editor (as shown), an uploaded zip file or a file on Amazon S3 — AWS’s file
storage service. The other two options are the runtime for the handler, and the path to
the handler method (whose format depends on the runtime chosen).

The environment upon which Lambda functions are run does not include any third-party
libraries not part of the core runtime, and so any such dependencies in users’ handlers
must be included its code. A common, and in fact, AWS’s suggested way to achieve this is
to simply download these libraries into the code base, and then package them into a zip
file to upload [6]. In Diorama, we should provide users with an easy way to use external
dependencies in their code.

Currently, AWS Lambda functions can be written in runtimes for six languages - Python,
Ruby, Java, C#, Node.js and Go [10]. This allows a developers to write handlers in one of
these six languages, which is useful, since they have the freedom to choose the language
out of those, which best for them, be that the one most well-suited to the task, or one
most widely used in their organisation. However, an even wider range or runtimes can

Chapter3 Related Work

be used — AWS allows developers to create and use their own custom runtimes for the
execution environment (Amazon Linux), meaning that theoretically, developers can use
any language which can runin this environment, given a custom runtime has been created
for it [11]. Such freedom to choose a programming language would be useful to students
using Diorama to writing node programs, because it would mean they are less likely to
need to learn a new language to do so.

3.8 Summary of related work

Table 3.1 summarises the features that each existing product we looked have have. In the
rightmost column, we set out which of these features we want Diorama to have.

%In theory, any language can be used with a custom runtime implementation. In practice, AWS only officially
offers runtimes for six languages.

3.8 Summary of related work 27

8T

YoM paiejey € 4oydeyd

A Simulator for Self-Stabilizing Distributed Algorithms

]
(V]
(24
©
s
£ g
2 2 g
(]
= 2 2
E %] — v é‘ g E
an o 7} o © — S
+ © e (@] (] wn o
3 g S i 2 = S
2 o o - O < qQ
Node isolation Threads | Single-thread | Single-thread Processes Single-thread n/a n/a ?
Visual network topology v v v n/a v n/a n/a v
Live network and node modification v v X X X n/a n/a v
Limit on number of simulated nodes 1 None None None None None None || None
User language(s) Java Java Java All C Several popular | All' Al
Output message filtering X X X X X n/a v v
Output message metadata X X X Docker Compose only X n/a v v
Provided messaging API v v Ve X v n/a n/a v

Table 3.1.: Feature comparison of selected related works.

Software Design

This chapter presents the overall design of our software package, Diorama. We also
discuss the rationale behind how design decisions were made in order to satisfy our
high-level objectives as set out in Section 1.1, as well as features we outlined in Section
3.8.

41 Overview

We have created a distributed algorithm simulator in the form of a web service. It can
be installed onto and served from a single virtual machine (VM). This would allow for
Diorama to be developed for one particular operating system, while at the same time,
being cross-platform for users (users can set up their own VM using hypervisor software
like VMware Workstation Player or VirtualBox, or use a cloud VM service).

We have published Diorama in two forms:

+ VM images compatible with popular cloud platforms and hypervisors;

+ a deployment tool which the user can run to install Diorama onto an existing VM.

A key advantage of this approach is that the web service and all underlying system de-
pendencies would run on a VM and therefore separately and isolated from the user’s
operating system. This means that other than those required to run the deployment tool,
we do not need to consider system and software requirements on the user’s machine.

4.2 Goals of the software package

We intend for Diorama to be used by people in the context of classroom teaching. It is
therefore appropriate to design it with the objective of facilitating defined user journeys.

We use the envisioned high-level user journeys for two personas:

29

https://www.vmware.com/uk/products/workstation-player.html
https://www.virtualbox.org

+ Leroy — a computer science lecturer who delivers a course on distributed comput-
ing. He uses live coding in one of his lectures to demonstrate the behaviour of a
distributed algorithm running on nodes in a network.

+ Stacey — a student who is following Leroy’s distributed computing course.

4.2.1 Use by an educator: Leroy’s user journey

Leroy wants to demonstrate to his class four distributed algorithms for broadcasting
messages:

Best-effort Broadcast

Eager Reliable Broadcast

Uniform Reliable Broadcast

+ Eager Probabilistic Broadcast

Installation

+ Preparing for his lecture at home on his personal computer, Leroy creates a cloud
virtual machine on the cloud services platform provided by his university through
a subscription.

+ Leroy installs Diorama onto his cloud VM, following simple instructions provided in
our installation guide.

+ Leroy opens the web user interface by connecting to public IP address of the VM
through his web browser.

Creating programs

+ On the web user interface, Leroy reads the documentation for creating node pro-
grams.

30 Chapter 4 Software Design

+ Leroy uses his preferred text editor to code the programs for the four algorithms he
wants to demonstrate and publishes them to a public git repository. He does this
as he wants the code to be viewable by his students.

+ Leroy creates four node programs on Diorama by providing the URL of each git
repository in the web user interface.

Defining the network topology

+ Leroy defines in code a network of seven fully-connected nodes, named node_ 1
through to node_ 7, which each run the Best-effort Broadcast program. He uses
the provided documentation for defining network topologies.

Running the simulation

Later on, Leroy delivers a lecture on reliable broadcast algorithms. He uses the desktop
computer in the lecture theatre and will demonstrate each of the four reliable broadcast
algorithms, beginning with Best-effort Broadcast.

+ Leroy opens a web browser on the lecture theatre computer and navigates to the
URL of his cloud virtual machine, which opens Diorama’s web user interface.

+ Leroy runs the seven nodes on the network he created at home and shows the real-
time output for these nodes. This shows his class how the Best-effort Broadcast

algorithm works and behaves.

+ Leroy removes two of the connections from one of the nodes in the network and
shows the output so his class can observe the effect this has had.

« Leroy replaces these two connections.

+ Leroy schedules two of the nodes to stop in six seconds to simulate them crashing.

+ Leroy continues showing the output from each of the seven nodes as two of them
crash.

+ Leroy changes the network so that the seven nodes all run the program for his next
algorithm — Eager Reliable Broadcast.

4.2 Goals of the software package

31

+ Leroy resets the simulation and in the same way, runs these seven nodes and
schedules two to crash. The output logs now show how Eager Reliable Broadcast
works and behaves.

+ Leroy repeats this for the remaining two algorithms — Uniform Reliable Broadcast
and Eager Probabilistic Broadcast.

4.2.2 Use by a learner: Stacey’s user journey

Leroy has set Stacey an exercise involving implementing a broadcast algorithm and ob-
serving how it behaves with different program parameters, different network topologies
and connection delays and failures.

Installation

+ Stacey creates a new virtual machine using a hypervisor she already has installed
on her laptop.

+ Stacey installs Diorama onto her VM, following simple instructions provided in the
installation guide.

+ Stacey opens the web user interface using her web browser by connecting to the
local IP address of her VM.

Creating the program

+ Using the web interface, Stacey creates a node program and implements her al-
gorithm using the editor in Diorama’s web user interface. She is guided by the
documentation provided for creating node programs.

Defining the network topology

+ Stacey creates a network of five nodes arranged in a line topology by defining this
in code. She uses the provided documentation for defining network topologies.

32 Chapter 4 Software Design

Running the simulation

« Stacey runs the five nodes in her network.

+ Stacey schedules all her nodes to stop running after 10 seconds.

Exporting output

« Stacey downloads the output from the five nodes as a CSV file. She will use this
later to analyse the success of the network in a spreadsheet software package, and
present her analysis using graphs in her report.

Modifying program parameters

+ Stacey changes some program parameters by editing her code for her node pro-

gram.

« Stacey then runs her simulation and exports the output as before.

Adding connection delays and failures

+ Stacey navigates adds a random delay to one of the connections in her network.
She defines this delay to be normally-distributed, with a mean of 300ms and a
standard deviation of 70ms.

+ Stacey adds an 85% message-sending success rate on three other connections in
the network.

« Stacey resets and runs her simulation and exports the output as she did before.

Modifying the network topology

+ Stacey changes the topology to her own custom topology by defining it in code.

« Stacey resets and runs her simulation and exports the output as before.

4.2 Goals of the software package

33

34

4.3 Technical representation of concepts in distributed
algorithms

We use Docker as the underlying service on which we will run simulations. As explored in
Section 3.4, Docker has several features which make it well-suited for this in light of our
aims, for example, language-agnosticism, quick setup of containers and the ability to run
a large number of containers simultaneously.

A Docker image will be created for each of the user’s programs. Each image will share
the name of the program and will be built on top of image layers for the user’s chosen
runtime for each program. We will create Docker images to implement the underlying
behaviour of nodes in each of our supported runtimes.

Each node in the user’s network will be simulated with a Docker container running the
Docker image for the node’s program. After our software creates each Docker container,
the user will be able to start, stop, pause and resume (unpause) a node’s container
depending on its state in its lifecycle. We illustrate the possible states and the actions
available for each state in Figure 4.1.

Stop

Start

Pause

Unpause

Creation (when the
simulation is set up)

Figure 4.1.: State diagram for a simulated node.

Communications between nodes will be implemented by sending UDP packets between
containers. Containers will all be connected to the same network, using the provided
Bridge network driver, but two containers will only be able to send and receive packets to
each other if their respective nodes are connected together in the user-defined network

Chapter 4 Software Design

topology. We enforce this restriction in our underlying node implementation for each
runtime.

4.4 Programming interface

We provide the user with documented interfaces to write their own node programs and
create network topologies.

4.41 Node program API

The user can create a node program by implementing a method which the node effectively
runs as its main method. It takes five arguments:

+ peerNids (list of strings) - the node IDs (or nids) of all nodes that this node is
connected to.

+ myNid (string) - the nid of this node.
+ send (method) - sends a message to a connected node. It takes two arguments -
message (bytes), a bytes object to be sent, and recipientNid (string), the nid

of the node to whom the message is being sent.

+ receive (method) - receives the next message and returns a tuple of the message
(bytes) and the sender’s nid (string). This is a blocking method.

+ storage (Storage object) - a persistent static key-value pair data store. It can
be used, for example, to recover data after a node failure.

The Sstorage object is modelled as a simple key-value pair store. Keys must be strings,
but values can take any type. It has seven public methods:

+ get (key) (return value can be of any type; key is a string) - returns the value
associated with the given key, or null if there isn’t one.

+ getAll () (returnsan associative array, where all keys are strings and values can
be of any type) - returns all key-value pairs stored.

+ put (key, value) (returns null; key is a string; value can be of any type) -
stores the given key-value pair. If a pair with the same key exists, this replaces it.

4.4 Programming interface

35

36

« remove (key) (returns null; key is a string) - removes the key-value pair with the
given key if one exists.

+ containsKey (key) (returnsaboolean; key is a string) - returns whether or not
a pair with the given key is present in the store.

« clear () (returns null) - removes all key-value pairs in the store.

« size () (returns an integer) - returns the number of key-value pairs in the store.

Anything which the user writes to standard output will be displayed in the node logs in
our web user interface.

Example node program

Let us consider a node program which stores the last message received from each of its
connected nodes. After every 20" message received, it prints this for each node, retrieving
the message from the store. We present the pseudo-code for this in Figure 4.2.

On receive message from sender:
put <sender, message> into storage
send message to sender
on every 20th message received:
output "Here are the last messages I received from each of my
connected nodes:"
for node in connected nodes:
output node: node-message
where node-message is get node from storage
reset storage

Figure 4.2.: The pseudo-code for our example node program.

To demonstrate the node program APl we have presented, we use it to write the program
in Python. We show this in Figure 4.3 and observe that our implementation does not add
any unnecessary complexity.

Note that names of provided API functions and arguments are in snake case, while our
presentation of the APl uses lower camel case. This is because the standard naming
convention for Python uses snake case [64].

Chapter 4 Software Design

number_of_messages_to_receive_before_broadcasting = 20

def main(peer_nids, my_nid, send, receive, storage):
while True:
for i in range (0,
number_of_messages_to_receive_before_broadcasting) :
bytes_message, sender_nid = receive()
message = bytes_message.decode ("utf8")
storage.put (sender_nid, message)
send (bytes_message, sender_nid) # Echo the message back to
sender
print ("Here are the last messages I received from each of my
connected nodes:")
for peer_nid in peer_nids:
if storage.contains_key (peer_nid):
print (f" {peer_nid}: {storage.get (peer_nid)}")
storage.clear ()

Figure 4.3.: The Python code for our example node program, using our interface.

4.4.2 Network topology schema

The user defines their network topology by declaring its nodes in a serialisation language,
such as JSON or YAML. All connections between nodes are two-way, meaning that if
nodeA can successfully send messages to nodeB, then nodeB can successfully send
messages to nodeA. We provide support for automatically generating nodes connected
together in common topologies, which can be included as part of the user’s overall
topology.

At the top level, the topology definition is a dictionary with at least one of the keys,
single_nodes and node_groups. The values for each of these is a list of dictionar-
ies.

Single nodes

Eachdictionaryinthe single_nodes list represents a single node and has two required
and one optional key-value pairs:

« nid (string) - the nid of the node, determined by the user.
» program (string) - the name of the program that the node should run.

+ connections (list of strings; optional) - nids of nodes that this node is connected
to. Since connections are two-way, each connection only needs to be defined

4.4 Programming interface

37

38

once: ifaliceisinthe connections list of bob, then bob is effectively in the

connectionslistofalice.

Node groups

Each dictionary in the node_groups list represents a group of nodes in a common
topology. We support five such network topologies — ring, line, fully-connected, star and
tree (we illustrated each of these in Section 2.1).

The generated nids for topologies take the pattern:

[PREFIX] [COUNTER] [SUFFIX]

where [COUNTER] is an incrementing integer and [PREFIX] and [SUFFIX] arede-
termined by the user. For example, a fully-connected network of three nodes would
have the nids, myFC—0a, myFC—1a and myFC-2a if the [PREFIX] were myFC— and
the [SUFFIX] were a.

Adictionary representing ring, line or fully-connected topologies has four required and
four optional key-value pairs:

type (string) - the type of standard network topology. It must be one of ring,

lineor fully_connected.

« number_nodes (integer) - the number of nodes in this topology.

+ program (string) - the name of the program that the nodes in this topology should
run.

» nid_prefix (string) - the prefix for the generated nids.

+ nid_suffix (string; optional) - the suffix for the generated nids. The default suffix
is the empty string.

+ nid_starting_number (integer; optional) - the first number of the counter for
the generated nids. The default starting number is 0.

* nid_number_increment (integer; optional) - the increment step size of the
counter for the generated nids. The default step size is 1.

Chapter 4 Software Design

« connections (list of dictionaries; optional) - extra connections from a node in
this group to another node in the overall topology. Each dictionary in this list has
two keys: from and to, which take the nids of the two nodes to connect together.

Adictionary representing a star topology of a hub and one or more hosts has six required
and four optional key-value pairs:

+ type (string) - star.

+ hub_program (string) - the name of the program that the hub node should run.

« hub_nid (string) - the nid of the hub node.

« number_hosts (integer) - the number of hosts in this star topology.

+ host_program (string) - the name of the program that the host nodes should
run.

» host_nid_prefix (string) - the prefix for the generated nids of the host nodes.

» host_nid_suffix (string; optional) - the suffix for the generated nids of the
host nodes. The default suffix is the empty string.

« host_nid_starting_number (integer; optional)-thefirstnumber of the counter

for the generated nids of the host nodes. The default starting number is 0.

+ host_nid_number_increment (integer; optional) - the increment step size of
the counter for the generated nids of the host nodes. The default step size is 1.

« connections (list of dictionaries; optional) - extra connections from a node in
this star topology to another node in the overall topology. Each dictionary in this
list has two keys: from and to, which take the nids of the two nodes to connect
together.

We model a tree topology has several levels of nodes. At the first level is a single node -
the root of the tree. Each level thereafter contains the children of the nodes in the level
above. A dictionary representing a tree topology has five required and four optional
key-value pairs:

+ type (string) - tree.

« number_levels (integer) - the number of node levels.

4.4 Programming interface

39

40

« number_children (integer) - the number of children (in the next level) that each
node has.

+ programns (ordered list of strings) - the names of the programs that nodes on each
level should run, starting from the first level (root).

+ nid_prefixes (ordered list of strings) - the prefixes for the generated nids of the
nodes on each level.

+ nid_suffixes (ordered list of strings; optional) - the suffixes for the generated
nids of the nodes on each level. The default suffix is the empty string.

» nid_starting_numbers (ordered list of integers; optional) - the first numbers
of the counters for the generated nids of the nodes on each level. The default
starting number is 0.

+ nid_number_increments (ordered list of integers; optional) - the increment
step sizes of the counters for the generated nids of the nodes on each level. The
default step sizeis 1.

« connections (list of dictionaries; optional) - extra connections from a node in
this tree topology to another node in the overall topology. Each dictionary in this
list has two keys: from and to, which take the nids of the two nodes to connect
together.

Example network topology definition

To demonstrate our interface, we use it to define the network visually illustrated in Figure
4.4. We show the nid of each node in bold type, with the italicised name of the program
it runs underneath in brackets. This network consists of alice, a standalone node
coloured orange; a star network with three hosts coloured red, a ring network of four
nodes coloured blue and a tree network with three layers coloured green. Using our
network topology interface, we show the code needed to generate this network, written
in YAML, in Figure 4.5.

4.4.3 Userevents interface
During the simulation phase, we provide the user the ability to schedule events - actions

that will be performed on nodes at some point in the future. Our interface requires a list
of events, with each event consisting of three of three values:

Chapter 4 Software Design

alice ho-1-st

(prog) | (host)

rl
(ring)

—

ro
(ring)

r3 r2
(ring) (ring)
root0
(tr_root)

b0 bl b2 b3
(tr_[2) (tr_12) (tr_2) (tr_2)

Figure 4.4.: An example network topology.

+ The time when the action should be performed, defined in length of time after the
user triggers the event schedule.

+ The nid of the node on which the action is to be performed.

+ The action to be performed - one of start, stop, pause and unpause.

Example user events

Given that a user has three nodes — a, b and ¢, which are in the stopped, running and
paused states respectively, the following user events result in the timeline illustrated in
Figure 4.6:

« Time: 1,000 ms; nid: a; action: start.
« Time: 1,000 ms; nid: c; action: unpause.

4.4 Programming interface

1

single_nodes:

- nid: alice
program: prog

node_groups:

- type: ring
number_nodes: 4
program: ring
nid_prefix: r
connections:

- from: rO
to: alice

- type: star
hub_program: hub
hub_nid: hubert
number_hosts: 3
host_program: host
host_nid_prefix: ho-
host_nid_suffix: -st
host_nid_starting_number: 1
host_nid number_increment: 2
connections:

— from: ho-1l-st
to: alice

- type: tree
number_levels: 3
number_children: 2
programs:

- tr_root

- tr_11

- tr_12

nid_prefixes:

— root

- a

- Db

connections:

— from: rootO
to: r2

Figure 4.5.: The YAML example network topology. We also provide a JSON version of this code in
Appendix A.

« Time: 2,500 ms; nid: a; action: stop.

« Time: 2,500 ms; nid: b; action: stop.
« Time: 2,500 ms; nid: c; action: stop.

42 Chapter 4 Software Design

Nodea [EdeJoJolls| running stopped

\CEI running stopped

Node ¢ running stopped

0ms 500 ms 1,000 ms 1,500 ms 2,000 ms 2,500 ms

Figure 4.6.: The timeline of node states generated by our example user events.

4.5 Web userinterface

DIORAMA Connection status | Settings

ead /ﬁ

Programs \
Shows status of connection
to server
Network topology ‘\ Interface options
e.g. language,
Advanced el forlz,:r:l:ur
Configuration Navbar links to each page
r

Simulation (page content goes here)

Figure 4.7.: Wireframe of the main navigational and other fixed elements of the web application.

Based on our user journeys outlined in Section 4.2, we present the design of the web user
interface for Diorama through a series of wireframes.

4.5.1 Main elements

We show in Figure 4.7 the elements of our interface which remain fixed across all its pages
— the navigation bar and the top bar. Our interface will contain four main pages which can

4.5 Web userinterface

44

be accessed directly through the navigation bar on the left side of the interface. In our
fixed top bar, we include a visual indicator of the status of the connection to the server,
as well as a button which brings up a modal in which the user can change user interface
options, such as visual preferences and language. The contents of other wireframes will
be included in the interface in the red box.

Clicking edit goes to the
Progra ms program editor page

Program name

hub “ Python Last modified: 3 hours ago Zip upload Edit | Delete
host Elixir Last modified: Today 09:47 Zip upload Edit | Delete
best_effort Go Last modified: 12th June Code Edit | Delete
failure_detector Python Last modified: 1 minute ago Git repo Edit | Delete

[+ Create new program A]

\

Clicking this button goes to the program
editor page for a new program

Figure 4.8.: Wireframe of the programs viewer.

4.5.2 Programs explorer

Figure 4.8 shows the first main page, the programs explorer. It lists the programs which
the user has written, along with details (runtime, last edit time, code source), a button to
delete each program and a link to each program’s editor page, illustrated in Figure 4.9.
The user can also create a new program using the button as illustrated.

4.5.3 Program editor

On the program editor page in Figure 4.9, the user can view documentation for the node
program interface which they willimplement. They can provide the code for their program
in three ways (the code source):

+ Coding directly in the web user interface using the graphical text editor. This is

suited to smaller programs and is particularly advantageous in that it is a very quick
way to write programs and provides a quick turnaround for making changes to

Chapter 4 Software Design

Progra ms > best effort { View APl documentation }
Opens modal showing API /
documentation for writing a node
program in the selected language
Name: best_effort |
Description: Best effort broadcast - sends message to all connected nodes
Runtime: | Go v |
Code source: | Code v |
Main function: | main.bestEffortBroadcastMain |
1 package main This area would be a file upload
2 area or a git repository URL input
31 import ::f"‘t" i if git repo or zip file were chosen
g import “bytes as the code source respectively
6 func bestEffortBroadcastMain(myNid string, connectedNids [JIstring) {
7 fmt.Printf("hello whirled\n")
8 3
9
10

Figure 4.9.: Wireframe of the program editor.

them. For runtimes where it is straightforward and appropriate to do so, we will
also allow the user to list required external dependencies from the runtime’s official
online software repository, such as PyPI for Python, npm for Node.js and RubyGems
for Ruby.

+ Providing the URL to a public git repository and optionally, the desired checkout
tag for a specific commit. This allows users to share their code (as in the case of
our persona, Leroy, in Section 4.2.1), for example, on GitHub, and is good for larger
projects where multiple files and modules are needed.

+ Uploading a zip file. If a user’s program requires custom third-party libraries, these
can be packaged together with the program code. It also allows for multiple files
and modules to be used - useful in larger projects.

The main method which implements our node program API (Section 4.4.1), needs to
be provided. For programs where the code source is raw code (coded directly in the
interface editor), this is simply the name, for example, nodeMain. Where the code
source is a git repository or a zip file, the path to the handler must be provided, for
example, myModule. fileName.nodeMain. This allows the user to program using
helper methods and to use a more complex file structure for larger projects.

4.5 Web userinterface

45

https://pypi.org
https://npmjs.com
https://rubygems.org/
https://github.com

46

4.5.4 Network topology editor

Network topology { View API documentation ‘
Self-connected nodes: | Yes v View graphical network l [Sav4| l Cancel l
Language: |YAML / ’ v |

1 single_nodes: \

2 - nid: alice

3 program: host Or JSON

4 - nid: bob

5] program: hub

6 connections:

7 - alice

8

I
Opens modal showing API
documentation for defining a

network topology
Opens modal
displaying the code as a
graphical network with
nodes and edges

Figure 4.10.: Wireframe of the network topology editor.

The design for the network topology editor page is outlined in Figure 4.10. Here, we
provide a text editor for the user to write their topology, following our interface presented
in Section 4.4.2. We will initially support the serialisation languages, JSON and YAML,
since these are two of the most popular and human-readable serialisation languages.
Like the program editor page, the user is able to bring up documentation for our network
topology interface through the button in the top right corner.

We give the user the option to make nodes self-connected. This is useful, since in many
distributed algorithms, a node’s ability to send messages to itself is assumed, and so the
option saves the user from needing to add these connections explicitly in their topology
definition code.

As well as this, when the user clicks the button labelled View graphical network, a visual
graph, showing their topology will be displayed in a modal, as we show in Figure 4.11.
This will allow them to check that the graph they have coded is as they intended. We also
allow the user to add a random or fixed delay and set success rates for message-passing
to a connection by double-clicking on the graph edge representing it.

Chapter 4 Software Design

Connection editor modal

f
double-click

Modify connection: alice to bob

Opens a modal for

editing this connection Message sending success rate

86%
Graphical topology viewer Message sending delay
Distribution
| Normal v |
Mean (ms) Variance (ms)

| 600 | | 500 |

Figure 4.11.: Wireframes of the graphical topology viewer and the connection parameters editor.

4.5.5 Advanced configuration

The Advanced configuration page, shown in Figure 4.12, allows the user to change more
advanced settings in their simulation. Our intention is that the settings here need not
be changed in the vast majority of uses, however, there may be some occasions where
this is needed, for example, when the user is using other local IP addresses in other
applications.

4.5.6 Simulation

The user will run and manage their simulation using the simulation page. This has two
tabs: the node manager view, shown in Figure 4.13, and the node output logs view,
shown in Figure 4.14. At the top of the page, there are three buttons: one which brings
up a graphical network modal (Figure 4.11) to allow the user to edit node connection
parameters'; one for the user to bring up the modal to schedule events; and a reset
button, which contains an indicator that is visible when the user has made changes to
their programs or their network topology since their simulation was set up (in other words,
their simulation is out-of-date).

'The user journey for Leroy sees him removing node connections (Section 4.2.1). Our solution for this would
be to set the message sending success rates for such connections to 0 %. Doing this achieves the same
effect.

4.5 Web userinterface

47

48

Advanced configuration

Base IP address: | 172.190.0.1 |
Network subnet: | 172.190.0.0/16 |
Base port: | 2000 |

Figure 4.12.: Wireframe of the advanced configuration page.

Node manager view

The node manager view (Figure 4.13) lists the nodes that have been generated for the
simulation. The status of the Docker container for each node is shown, and the user can
use buttons to perform the possible actions on the container, given its state. We also
provide checkboxes so that multiple nodes can be selected, and then an action can be
performed on all selected nodes. The user event scheduler modal allows users to add
events to a list, and then run all of these. The columns of the table shown correspond to
the three values needed to define an event using our interface (Section 4.4.3).

Node output logs view

The node output logs view (Figure 4.14) displays, in real-time, data written to standard
output (stdout) for each node in chronological order. We use coloured rows to differentiate
between the output from different nodes, and these colours are accordingly used in the
node manager view for each node. We also provide the user with a filter which they can
use to select which lines of output to show and hide. They can filter by the contents of the
message, optionally using regular expressions; the program which the node is running;
and choose to just show output from their selection of one or more nodes. Users may
need to use the logs from their simulation elsewhere; for example, our persona, Stacey,

Chapter 4 Software Design

Opens graphical network modal

. toeditnode connections
S|mulat|on Edit network connections } L‘Schedule events] ;*] Reset }
*~13 *
Manage nodes click View logs
. Action buttons
Nid P Stat
' rogram s for each node
O alice host (Elixir) Stopped Start
\
]
ER bob hub (Python) Running \ Pause | Stop

Indicates when there has Schedule events

been a change to a

program or the network Time (ms) Node Action
topology since the)
simulation was started 3000 alice Start X
5500 bob Stop X
I 6200 l [alice Vl I Start v +

Tickboxes to perform an
action on multiple nodes

scheduler modal

Figure 4.13.: Wireframe of the node manager view within the simulation page and the user event
scheduler modal.

uses spreadsheet software to statistically analyse her data and draw graphs. We therefore
provide the ability to download these logs as a CSV or JSON file and to copy the data in
the logs table to the clipboard, ready to be pasted straight into a spreadsheet software
package.

4.6 Concluding remarks

We have presented a design for a distributed algorithm simulator web service which is
cross-platform and straightforward for users to set up. We have outlined, at a high level,
how a user’s programs, nodes and network topology would be represented using Docker,
which allows users to write programs in a wide variety of languages and to run simulations
with large numbers of nodes running simultaneously.

We have designed an intuitive programming interface for users to write node programs,
which can easily send and receive messages to and from other connected nodes, and
incorporates a persistent static key-value data store. We provide a powerful schema for
users to declare their network topology — the nodes in it and how they are connected
— using the common serialisation languages, YAML and JSON. It also allows users to
include in their topology groups of automatically-generated nodes connected together

4.6 Concluding remarks

49

50

Simulation Schedule events l [*] Reset ‘
Manage nodes View logs
Message contains: | | Regex? [
Node program: | (all selected) v |
Node nid: / | alice, bob v |
Filtering for messages Copy logs to clipboard ‘ I Download logs l

Nid Timestamp Message

alice 2019-05-14 12:54:07 Broadcasting “hello everyone”

bob 2019-05-14 12:54:07 Received “hello everyone” from alice

alice 2019-05-14 12:54:17 Broadcasting “hello everyone”

bob 2019-05-14 12:54:17 Received “hello everyone” from alice

alice 2019-05-14 12:54:27 Broadcasting “hello everyone”

bob 2019-05-14 12:54:27 Received “hello everyone” from alice

Figure 4.14.: Wireframe of the node output logs view within the simulation page.

in common topology shapes. Our system for creating future node-action events allows
users to create a simple timeline of future desired events.

Guided by two clearly-defined user journeys, we have proposed an ergonomic web user in-
terface on which a user can run a simulation of their defined network topology with nodes
running programs they have written using our well-documented API. During simulations,
it displays logs from all nodes in real-time, which can be filtered and exported.

Chapter 4 Software Design

Proof-of-concept: Diorama

DAI *UH ‘RAA ‘MUH. noun - a model that shows a
situation ...in a way that looks real.

— Cambridge English Dictionary
(Definition of Diorama [14])

In this chapter, we present our proof-of-concept implementation of Diorama, discuss key
parts of the technical implementation and explore some of the challenges we faced.

5.1 Aims for the proof-of-concept

We set out to create a practical working implementation of Diorama, following the design
we presented in Chapter 4 as much as possible in order to entirely support the two user
journeys presented in Section 4.2. We wanted to finish with a product which was ready
to be deployed by users and used for its purpose of simulating distributed algorithms.
Given the limited time frame available to achieve this, we would prioritise implementing
key features and user functionality, over striving for production-quality standards in
engineering or user experience design.

Furthermore to this, we wanted to engineer a proof-of-concept which uses, to as great
of an extent as possible, best-practices, and modern widely-used technologies. This is
towards making our product something which could, in future, be easily built upon by
myself or others in the open-source community, hopefully ending up with something
which can be used in the real world — by real teachers and lecturers, by real students, in
real classrooms and lecture theatres.

5.2 Overview of product

Our proof-of-concept Diorama application successfully meets the vast majority of our
primary aim — to implement our design and support the user journeys of Leroy and Stacey,
our two personas. It does, however, miss one piece of desired functionality: editing node

51

connection parameters live, that is, while a simulation is running. We explore reasons for
this, as well as possible workarounds in Section 6.1.

We have produced a web application which can be deployed by users in a straightforward
manner. The application is self-contained on a single Ubuntu Linux virtual machine, and

we publish this in two forms:

« full virtual machine disk images for each of the cloud platforms, Microsoft Azure,
Google Cloud Platform (Compute Engine) and AWS (EC2), as well as for the VirtualBox
hypervisor software.

+ adeployment tool which installs Diorama on an existing virtual machine using SSH.

5.2.1 Gallery

In Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 we show the
different parts of our web user interface.

diorama

i PROGRAMS

sh NETWORK TOPOLOGY

‘\ CONFIGURATION

- oo Welcome to Diorama

Simulate your own distributed algorithms on your own network topology

Learn how to use Diorama to create Read the documentation for writing
and run your first simulation node programs and defining your
network topology
Show me how!
Take me there!

Figure 5.1.: The home page.

52 Chapter 5 Proof-of-concept: Diorama

diorama

PROGRAMS DOCU meﬂtatlon

A'h NETWORK TOPOLOGY Reference pages for our interfaces for writing node programs and defining your own network topology.

\\ CONFIGURATION Node program APl

e Python 3

Network topology API

* JSON
* YAML

€= SsIMULATION

Figure 5.2.: The documentation page.

Preferences

Colour scheme
Default

Language

English (United Kingdom)

Figure 5.3.: The user interface preferences modal, where users can select their language and
colour scheme.

5.2 Overview of product 53

54

diorama

PROGRAMS Programs
NETWORK TOPOLOGY
CONFIGURATION ﬁ hello a broadcaster
SIMULATION
Says hello when it receives Broadcasts the letter, ‘a), to
amessage. all connected nodes every
200ms.

Runtime: Python 3
Runtime: Python 3

Raw code B

Raw code 5]

=]}
N

Figure 5.4.: The node programs viewer.

diorama
PROGRAVIS Programs > broadcaster

gh NETWORK TOPOLOGY)
® Program API documentation

S CONFIGURATION
Description

&= SIMULATION
What does this node do?

£ Broadcasts the letter, ‘a!, to all connected nodes every 200ms.

Runtime

something
Python 3

Code source
° Raw code ZIP file upload Git repository

Dependencies

Code
1 from time import sleep
2
3~ def main(peer_nids, my_nid, send, receive, storage):
4~ while True:
5+ for p in peer_nids:
6 send(b'a’, p)
7 message, nid = receive()
8 sleep(0.2)
9 print(f'{message.decode("utf8")} from {nid}')
10

Figure 5.5.: The node program editor, showing raw code input.

Chapter 5 Proof-of-concept: Diorama

List your pip dependencies, with each on a new line like in a requirements.txt file.
1

+ New program

diorama

PROGRAMS
A‘!‘a NETWORK TOPOLOGY
\\ CONFIGURATION

= SIMULATION

diorama

PROGRAMS
!"h NETWORK TOPOLOGY
\\ CONFIGURATION

€= SIMULATION

Figure 5.6.: The network topology editor.

@ ©
® Network topology API documentation
Language
Self-connected nodes
YAML v

Unless your code says that it should, each node isn't

connected to itself.
1 single_nodes: Double-click on node ions to add
2- - nid: he !
3 program: hello passing delays or success rates.
4~ - nid: alpha
5 program: hello
6- - nid: br
7 program: broadcaster
8 connections:
9 - he
10 - alpha

he
(hello)
br
(broadcaster)
® ©

Network topology

® Network topology API documentation

Network Topology APl (YAML)

Define the shape of your network - what nodes are present, what programs they each run, and how they're connected, by
coding your topology.

The basics

Your topology should be a map/dictionary with at least one of the keys, single nodes and node_groups . The values for
each of these will be a list of dictionaries, each representing a node or a group of nodes respectively.

single_nodes:

node_groups:

Single nodes

Each node in single nodes has the following keys:
e nid string the ID of the node (determined by you)
e program string the name of the program that this node should run
e connections [ist of strings (optional) list of node IDs that this node is connected to. All connections are two-way, so
if you only need to define each connected once.

Figure 5.7.: The network topology editor with the APl Documentation accordion expanded

5.2 Overview of product

55

Modify connection: br to he

Message sending success rate

Message sending delay

Distribution

fixed

Parameters
value

0

Save Cancel

Figure 5.8.: The network connection editor modal.

diorama =
H PROGRAMS Simulation
A'E'! NETWORK TOPOLOGY

‘\ CONFIGURATION

$= SIMULATION » Start simulation

Figure 5.9.: The simulation page, before a simulation has been started.

56 Chapter 5 Proof-of-concept: Diorama

diorama

PROGRAMS
£h NETWORK TOPOLOGY
\\ CONFIGURATION

*’ SIMULATION

Simulation

Schedule events

Manage nodes

Node ID (nid)

Status

lm stopped

lem stopped

% running

W Stop and reset

Output viewer

Program

hello e
hello e -
broadcaster a m

Figure 5.10.: The node manager view on the simulation page.

Schedule events

Time (ms) Node

300 he

300

5000

Figure 5.11.: The user events scheduler modal.

Action

start

start

start

start

5.2 Overview of product

57

diorama o ®

PROGRAMS Simulation

gh NETWORK TOPOLOGY

2 Schedule events M Stop and reset

‘\ CONFIGURATION

Manage nodes Output viewer
= SIMULATION N
Filtering
Export Data
< Download CSV < Download JSON] Copy to clipboard
Node ID (nid) Timestamp Output

Figure 5.12.: The output logs view on the simulation page.

diorama ° ®

PROGRAMS Filtering

Output message
g5 NETWORK TOPOLOGY

Contains: Regex?
‘\ CONFIGURATION
Does not contain:

$= sIMULATION

Node
Program: Select nodes:
v alpha x M
Nid contains: Regex?
Nid does not contain:
Export Data
<& Download CSV & Download JSON] Copy to clipboard

Node ID (nid) Timestamp Output

Figure 5.13.: The output logs view on the simulation page with an active filter.

58 Chapter 5 Proof-of-concept: Diorama

5.3 Web service architecture

The Diorama software package consists of several applications running on a single self-
contained virtual machine running Ubuntu Linux, which requires connections to the
external web service, Docker Hub, external software repositories for different runtimes as
well as, optionally, public git repositories (if a user chooses this as their code source for a
node program). We summarise this visually in Figure 5.14.

Our web user interface takes the form of a web application, written in JavaScript using the
React framework. We compile our React source code into static HTML, CSS and JavaScript
files which we serve to the user’s web client (browser) from the filesystem of our virtual
machine using an Nginx server. We server this on port 80, the default HTTP port, of the
virtual machine, so that it can be accessed by simply typing the IP address or DNS name
of the virtual machine into the web browser.

The web application, running on the user’s web client, establishes a two-way connec-
tion to the main server on the virtual machine through the WebSocket protocol. This
WebSocket connection is the primary way that the client communicates with the virtual
machine. This main server is written in Python and uses the Tornado Web Server frame-
work. In addition to this, some particular communications between the client and the
main server are performed through traditional HTTP requests, namely uploading ZIP
files for user node programs and uploading network topology definition code. The role
of the main server is to perform all the logic required in the Diorama application, store
user data, such as programs and the network topology, and to provide an interface for
the web application to interact with underlying Docker resources.

We run Docker Engine on our virtual machine, using Docker networks, images and con-
tainers as outlined by our design in Section 4.3. These Docker resources are managed by
the main server through the Docker Engine API using the official Python SDK.

We use another Tornado Web Server-based Python application — the node logger. Its role

is to monitor Docker containers’ output messages, and to relay these back to the main
server though HTTP requests.

5.3 Web service architecture

59

60

Client (web browser)

React web application m

A

HTTP
on :80/

WebSocket connection

HTTP (for uploading zip files
and network topology)

Nginx server
(Configuration in
diorama-deploy)

Main WebSocket server
(diorama-server)

Serves

Generated React
static files
(Source filesin
diorama-web-ui)

HTTP

Node logger
(diorama-node-logger)

HTTP through the
y Docker SDK for Python

Docker REST API

> Docker Engine
Server (Ubuntu Linux virtual machine)
N
I Git repositories -
Docker Hub Software repositories

Figure 5.14.: A high-level view of the architecture for our web service.

Chapter 5 Proof-of-concept: Diorama

5.4 Back-end: implementing programs, nodes and

networks with Docker

Following our design (specifically Section 4.3), we used Docker images and containers
to represent the node programs written by the user and their simulation nodes respec-
tively.

5.4.1 Node program images and containers

We set out to create a Docker image for each of our supported runtimes, which when
packaged with the user’s node program code, would perform the correct functionality
when run on a container, namely:

« install the user’s specified dependencies.

« run the user’s specified main method when initialised, performing the functionality
expected by the user and defined in Section 4.4.1.

+ through UDP, send messages to and receive messages from other nodes if and only
if they are connected in the user’s network topology.

+ observe and satisfy the user’s chosen message-passing success rates and (random)
delays when sending messages.

We have implemented such a Docker image in the Python 3 runtime. Due to time con-
straints and because we judged it to be of relatively low priority, we have not created
implementations in other runtimes. We have however demonstrated with our Python
3 runtime implementation, that building a satisfactory Docker image in other runtimes
is certainly technically feasible. We believe that replicating this in other high-level and
imperative runtimes, such as Ruby and Node.js (JavaScript), would be straightforward,
building upon and using the ideas in the code for the Python 3 image we have built.

We refer to the program code (in this case, Python 3 code) we have written for the Docker
image as our base node program.

Setup of the Docker image

Our base node program requires several extra files, generated based on the user’s setup,
to be packaged with it to set up and run:

« the user’s node program file(s).

5.4 Back-end: implementing programs, nodes and networks with Docker

61

1
2
3
4

(6,

0 ~NOoO U WN

62

+ the user’s program’s dependencies.

+ alist of the IP addresses of all nodes in the network.

« a list of the node connection parameters (success rates and delays) for all node
connections in the network.

for program in programs:

with tempfile.TemporaryDirectory () as _program_temp_dir:
program_temp_dir = os.path.join(str(_program_temp_dir), ’'tmp’)
shutil.copytree (os.path.join(constants.BASE_NODE_FILES_DIRECTORY,
program[’runtime’]), program_temp_dir)

shutil.copy2 (node_addresses_file_path, program_temp_dir)

shutil.copy2 (connection_parameters_by_node_file_path,
program_temp_dir)

get_code_for_program(program, program_temp_dir) # copies code
into <program temp_dir>/user_node_files

inject_user_dependencies (program, program_temp_dir)

docker_interface.create_image (str (program_temp_dir), programl[’
name’])

Figure 5.15.: A modified code snippet outlining the creation of node program Docker images.

We present a code snippet from the main Diorama back-end server in Figure 5.15 which
outlines the steps taken when images are created. For each node program the user has
created, we create atemporary directory (line 2) which contains the files required to create
the Docker image (line 9). On line 4, we begin by copying across the base node program
code into our temporary directory. On lines 5 and 6, we copy across files listing the IP
addresses of all nodes and the node connection parameters for all node connections in
the network respectively. We encode these lists as YAML files, but any data serialisation
language, such as JSON, could be used here. On line 7, we obtain the user’s node program
files and place it into the temporary directory. This could be from any one of our three
supported code sources, and so could involve cloning a public git repository and checking
out a tag, unpacking an uploaded zip file, or simply creating a file from raw code that a
user has submitted. On line 8, we generate our dependency list file by combining the
dependency lists of our base node program and the user’s program. In our case, since we
are using Python and pip as our dependency manager and repository, the dependency
list takes the form of a requirements file (requirements. txt).

FROM python:3
WORKDIR /usr/src/app

COPY requirements.txt ./
RUN pip install —--no-cache-dir -r requirements.txt

COPY .
Figure 5.16.: The Dockerfile for our Python 3 node program Docker image.

We present our Dockerfile for our Python 3 runtime node program image in Figure 5.16.
It simply uses pip to install the listed requirements (lines 5 and 6) and copies across all

Chapter 5 Proof-of-concept: Diorama

the files in the aforementioned temporary directory (line 8). We build this on top of the
official Docker image for Python 3 (line 1).

Structure of a Python 3 node program and running containers

We create Docker containers for each node, and for each, set its run command to:

python —-u main.py

for node in nodes:
peer_nid_list = ’,’.Jjoin(node[dict_keys.NODE_CONNECTIONS])

run_args = [peer_nid_list, node[’nid’], str(node[’port’]), programl[’
main_method’]]
docker_interface.create_container_and_connect (..., run_args, ...)

Figure 5.17.: Amodified code snippet outlining the creation of node Docker containers’ command-
line argument lists.

We also pass to each container four command-line arguments, as can be seen in Figure
5.17:

a comma-separated list of nids of all nodes connected to it
its nid

its UDP port

the Python path to the user’s main method.

> w N =

|-— user_node_files/
| |-— my_node.py # contains my_main() - the user’s main method
| \-— utils.py

| -—— NetworkAdapter.py

| -— Node.py

| -— Storage.py

| -— connection_parameters.yml
|-— main.py

\-— node_addresses.yml

Figure 5.18.: The simplified post-setup file structure of a Python 3 node program. We assume that
the user has two files for their implementation —my_node.pyandutils.py.

The post-setup file structure of a Python 3 node program is shown in Figure 5.18. The
entry pointismain.py and in this file, we parse the command-line arguments passed
to it, as well as the connection_parameters.yml and node_addresses.yml
files. We then create a Net workAdapter object, which handles communication for the
node, as well as a Storage object for the static persistent storage available to the user’s

5.4 Back-end: implementing programs, nodes and networks with Docker

63

0 N o U

10
n
12

13
14
15
16
17
18
19

20
21
22
23
24

64

program. Finally, we create a Node object, which takes the created NetworkAdapter
and Storage objects, and runs the main method of the user’s program implementation

(in this case, user_node_files.my_node.my_main).

The NetworkAdapter object uses Python’s built-in socket library to send and re-
ceive UDP messages to and from other Docker containers, simulating nodes. It enforces
message-sending success rates and delays for each connection as the user has defined in
their setup of the network topology. It also implements the shape of the network topology
by preventing the sending of messages to other nodes not connected to it according to
the user’s network topology definition (we explain in Section 5.4.2 that the user’s network
topology is actually implemented as a single fully-connected network).

delay_variables = {
"fixed": lambda params: params|[’value’],

"uniform": lambda params: uniform.rvs (loc=params[’a’], scale=(params]|
"b’"] - params[’a’]l)),
"normal": lambda params: norm.rvs (loc=params[’mean’], scale=math.sqgrt

(params[’variance’])),

}
class NetworkAdapter:

def send(self, message, nid):
if nid not in self.peer_nids:
print (f"I tried to send a message to {nid}, but that nid
doesn’t belong to a node I’'m connected to")
return

is_failed_send = random.random() > self.send_success_rates[nid]
if is_failed_send:
return

delay = max (0, delay_variables[self.send_delays([nid] [’
distribution’]] (self.send_delays[nid] [’'params’]))

def send_message() :
self.socket.sendto(message, self.address_port_from_nid(nid))

Timer (delay / 1000, send_message) .start ()

Figure 5.19.: A modified code snippet illustrating the behaviour of the send () function of the
NetworkAdapter.

We illustrate this in the modified code snippet in Figure 5.19, which shows the behaviour
of the send () function of the NetworkAdapter. Lines 11-13 prevent the sending of
messages to unconnected nodes. Lines 15 to 17 implement the message sending success
rate parameter of the appropriate connection in the network using Python’s built-in
random library. Line 19 determines the correct message delay for the sending of the
message using the SciPy library. We show how this is done for some distributions in the
delay_variables variable onlinel. On lines 21 to 24, we set the message to be sent

Chapter 5 Proof-of-concept: Diorama

https://www.scipy.org/

using the socket . sendto function after this determined delay by creating and starting
athreading.Timer object.

5.4.2 Networking nodes

When we start a simulation, we connect every node container in the entire network
topology to a single Docker network, which the bridge driver. We set the subnet as the
IPv4 address:

172.190.0.0/16

which allows for up to 65,534 containers to be connected toit (IPv4 addresses 172.190.0.1
throughto 172.190.255.254 are available). Please note that this subnet was arbitrar-
ily chosen an bears no major significance.

def get_ip_address_for_node_index (index: int, base_ip_address: str) ->
str:
return str (IPv4Address (int (IPv4Address (base_ip_address)) + index))

Figure 5.20.: The method which assigns IPv4 addresses to node Docker containers.

We see in Figure 5.20 the method which assigns IPv4 addresses to each node. The each
node is given a unique and consecutive index ascending from 0 when passed into this
method — thisis the index argument. From this, we use the built-in ipaddress Python
library to generate its IPv4 address: The node withindex Oisassighnedbase_ip_address,
whichis 172.190.0. 1, the the node with index 1is assigned 172.190.0.2 and so
on. All nodes use port 2000 to send and receive messages.

5.5 Back-end: Main WebSocket server

As mentioned in Section 5.3 our main server uses the Tornado Web Server framework,
written in Python [68]. It has one WebSocket connection handler, as well as three HTTP
endpoints: two for the front-end web user interface, and one with the node logger server,
which we later describe in Section 5.5.5. This can be seenin lines 4 to 7 of the code snippet
we present in Figure 5.21. We further explore the WSHandler object, seen on line 6, in
Section 5.5.1.

5.5 Back-end: Main WebSocket server 65

0 ~NOoO U WN

_ — - —
NwNoIZToo

0O ~NO U WN

66

def make_server () -> tornado.web.Application:
return tornado.web.Application ([
(r"/", BaseHandler),
(r"/uploadZipFile/ (.*x)", ZipFileUploadHandler),
(r"/saveNetworkTopology", SaveNetworkTopologyHandler),
(r’ /ws’, WSHandler),
(r’ /loggingMessage’, LoggingMessageHandler)

if _ name_ == "_ main_ ":
server = make_server ()
server.listen (2697)

tornado.ioloop.IOLoop.current () .start ()

Figure 5.21.: A modified code snippet from the main method of our main server application.

"event": "deleteProgram",

"data": "{\"name\":\"hub_prog\"}"
}
{

"event": "getSimulationState"

Figure 5.22.: Two example WebSocket messages using our format protocol.

5.5.1 Using WebSocket messages

We establish a protocol for the format of the WebSocket messages send between the
front-end (client) and the back-end application (server), which is a simplification of the
Channels Protocol used by the technology company, Pusher [60]. As we exemplify in
Figure 5.22, messages are encoded in JSON and are objects consisting of:

+ anevent field - alower camel case string (we maintain a set list of possible values);

+ and optionally, a data field - a string, an encoded JSON object if relevant to the

event.

def parse_message (message) :
message_dict = Jjson.loads (message)
return message_dict[’event’], Jjson.loads(’data’) if ’"data’ in
message_dict else None)

Figure 5.23.: The WebSocket message parser method.

As we show on line 3 of Figure 5.22, the data field is a JSON object which we double-
encode, in order to enforce consistency in how it is encoded. We show in Figure 5.22

Chapter 5 Proof-of-concept: Diorama

1
2
3
4
5
6
7
8
9

10
n
12
13
14
15

16
17

the method within WSHand1ler which parses the messages into a Python tuple. (The
equivalent action is performed on the front-end, using JavaScript.)

class WSHandler (tornado.websocket .WebSocketHandler) :

def on_message (self, message):
event, data = self.parse_message (message)
handle (event, data)
handlers[event] (data, self.send_message)

def send_message (self, event, data):
self.write_message (json.dumps ({’event’: event, ’'data’: Jjson.dumps
(data) }))

handlers = {

"addProgram’ : (lambda data, _: programs.add_program(data)),

"getPrograms’: (lambda _, send_func: send_func (’programs’, programs.
get_programs())),

Figure 5.24.: A code snippet showing how WebSocket messages are handled.

In Figure 5.24, we show how we handle received WebSocket messages. Upon receiving a
WebSocket message, we perform one of two actions, determined by the event:

+ Update the of the state to reflect a change made. For example, we see on line 14
that in response to an addProgram event, we add the program encoded in the
data field.

+ Send a WebSocket message in response to a request for data. For example, on
line 15, we reply with a the list of stored programs in response to a getPrograms
event.

5.5.2 Storing data persistently

The main server handles the storage of user-generated data, including node programs,
the network topology and custom configuration (the main server does not store dynamic
state, such as unsaved edits — these are maintained in the front-end web user interface,
as explained in Section 5.6.1). We use the TinyDB library, which is a simple document
oriented database that stores data on disk as JSON files [65]. We chose this library since
several of its features were advantageous to us:

« It does not use an external server. An external server would have added to the
overall complexity of our overall web architecture.

5.5 Back-end: Main WebSocket server

67

O WO NOOULDA, WN = O oo ~NO U WN

—_

68

+ Its APl allows direct storage and retrieval of documents of Python types, including
booleans, dictionaries, strings and integers. This meant we did not need to handle
encoding or decoding of stored and to-be-stored data.

+ It stores documents in JSON files, which allowed us to easily read databases when
performing debugging.

programs_db = \textit{TinyDB} (' out/programs_db. json’)

def add_program(data) :
programs_db.upsert (data, Query().name == ’'name’)

def get_programs() :
return programs_db.all ()

Figure 5.25.: A code snippet showing how a TinyDB is used for storing and retrieving.

We demonstrate how it is used in the modified code snippet in Figure 5.25. On lines 4 and
5, we show how a user-defined program is stored. TinyDB databases are unindexed, so
we implement our own alternative: we effectively use the value of the name in a program
dictionary as its index. The code on line 9 simply returns a list of all program dictionaries
stored in the database.

5.5.3 Interacting with Docker Engine

We interact with Docker Engine by using the Docker SDK for Python [25]. This is a library
which interacts with Docker Engine’s HTTP API, and we chose to use it since was easier and
quicker to program with, compared to the alternative of directly making HTTP requests.

We structured the code so that all interactions with Docker Engine reside in one file —
docker_interface.py. We show an outline and an example use of the library in
Figure 5.26.

import docker

DOCKER_CLIENT = docker.from_env ()

def create_image (path, tag: str):
DOCKER_CLIENT.images.build(path=path, tag=tag, rm=True)

Figure 5.26.: An outline of our docker_interface.py Docker SDK for Python.

Chapter 5 Proof-of-concept: Diorama

OCoo~NoOUu D WN =

5.5.4 Fetching node program code

Users can provide their code for a node program in three ways: directly typing or pasting
itinto the code editor; uploading a zip file; or providing a URL and branch or checkout
tag to a public git repository. In cases where uses use the first way and directly input their
code, we simply store it using TinyDB, as illustrated in Section 5.5.2.

def write_zip_file(program_name, file_data):
with open (f"out/program_zip_files/{program_name}.zip", "wb") as fh:
fh.write(file_data)

class ZipFileUploadHandler (GeneralHTTPHandler) :
def post (self, program_name) :
write_zip_file(program_name, self.request.body)
self.write (' Upload successful’)

Figure 5.27.: A code snippet showing how we handle received zip files for user node program
code.

We enable users to upload their zip files by sending them to our server in the body of
an HTTP POST request from the front-end. On line 4 of Figure 5.21, we show that the
endpoint path for thisis /uploadzipFile/ [PROGRAM_NAME].We save the received
filein the directory out /program_zip_files/[PROGRAM_NAME] . zip relative to
the root directory of the server’s source code and show this in Figure 5.27.

For code programs where the code source is a git repository, we use the GitPython library
[71] to clone the repository from the URL provided by the user, and then checkout the
given branch or revision tag. We show this in lines 17 and 18 of Figure 5.28.

We show in Figure 5.28 the process of retrieving code for a node program in the process of
creating its Docker image when preparing for a simulation. Init, the temp_di r argument
is atemporary directory we create for compiling together all the code required for creating
the Docker image, including the base node program file for the program’s runtime and
the Dockerfile. We place the code retrieved into this temporary directory.

5.5.5 Handling Docker container messages: node logger server

One of the most difficult challenges we faced when building the back-end was obtaining
output messages from running Docker containers, and sending them to the web client

through the existing WebSocket connection live, as these messages were being generated.

The Docker SDK for Python provides us with a blocking generator for streaming container
output messages [25]. We would usually simply use multithreading to solve this problem,
and have the blocking generator run in a separate thread to not prevent the rest of the
server from running. However, the Tornado Web Server Framework uses Python’s built-in

5.5 Back-end: Main WebSocket server

69

1
2
3
4
5
6
7
8
9
0

1

n
12
13
14

15
16
17

18

70

def get_code_for_program(program, temp_dir):

code_source = program|[’code_source’]
assert code_source in ['zip’, ’'git’, 'raw’]
dir_to_write_to = os.path.join(temp_dir, ’user_node_files’)

os.mkdir (dir_to_write_to)

if code_source == ’'raw’:
file_name = '’ .join(
["node’, constants.FILE_EXTENSIONS_FOR_RUNTIME [program[’
runtime’111])
with open (os.path.join(dir_to_write_to, file_name), 'w’) as file:
file.write (program[’code_data’] [’ raw_code’])
elif code_source == ’'zip’:
with ZipFile (f"out/program_zip_files/{program[’name’]}.zip", ’'r’)

as zip_file_obj:
zip_file_obj.extractall (dir_to_write_to)
elif code_source == ’'git’:
git_repo = Repo.clone_from(program[’code_data’] [’ repo_url’],
dir_to_write_to)
git_repo.git.checkout (program[’code_data’] [’
checkout_branch_or_tag’])

Figure 5.28.: A code snippet showing how we retrieve a user’s code for a node program.

asyncio module. Unfortunately, using concurrency in such a situation was not part of
Tornado’s documentation, and despite much experimentation and searching, we were
not able to implement this by taking this approach.

We instead opted to use a separate process to stream container logs to the front-end web
client in the form of another web server. We outline its operation in Figure 5.29. This web
server, which we label as the “Node logger” in Figure 5.14 uses the Docker API to monitor
and stream output messages for running Docker containers, and sends these to our main
back-end server using HTTP calls in a JSON object. This JSON object also contains two
pieces of metadata — the name of the container from which the message was output,
and the time at which the message was output (according to the container itself, to avoid
delays in receiving the message from the Docker API from affecting this). We show this in
lines 15 to 19.

A challenge we faced when using this approach was preventing the front-end from receiv-
ing duplicated messages, when its WebSocket connection had re-connected from after a
disconnection (after a disconnection, the main server would have requested all output
messages from containers meaning that it would have again received the messages it
had already received before the disconnection). We solve this problem by having the
front-end send to the back-end the timestamp of the latest message it had previously
received, and then our node logger server simply doesn’t send all output messages with a
timestamp before this. The since_rawargumenton line 5 is the timestamp of the latest

Chapter 5 Proof-of-concept: Diorama

O WO NOOOUPA,WN =

DOCKER_CLIENT = docker.from_env ()
container = DOCKER_CLIENT.containers.get (name)
generator = container.logs (stream=True, timestamps=True, since=since)

def stream_logs_from_generator (name, since_raw):

asyncio.set_event_loop (asyncio.new_event_loop())

http_client = HTTPClient ()

while True:

try:

line: bytes = generator._ _next__ ()
split_line: List[bytes] = line.split (b’ ', maxsplit=1)
timestamp = split_line[0].decode ("utf-8")
if since_raw and timestamp <= since_raw:

continue
to_send: Dict[str, str] = {
"timestamp’ : timestamp,
"message’ : split_line[l].decode(’utf-8"),

"nid’ : name
}
http_client.fetch(
HTTPRequest (url=constants.MAIN_SERVER_LOGGING_MESSAGE_URL
, method="POST’, body=json.dumps (to_send)))
except Stoplteration:
break

Figure 5.29.: An outline of the logic in our node logger server.

message which the front-end client has, and we enforce the requirement of all messages
to be sent to be after this time on lines 13 and 14.

5.6 Front-end:React web application

Our front-end web user interface is a web application built using the React JavaScript
framework [33]. We chose to use this because its component-based programming model
and state management capabilities make it well-suited to our web user interface’s require-
ments. It is also extremely popular in the open-source community, meaning that many
useful and well-built open-source libraries are available for it, it is very well-documented
and many community-written guides and articles on using it are available. These factors
made using it to build Diorama’s front-end much easier and more efficient.

For the visual design of our user interface, we use the MetroUI CSS library [59] to help us.
It provided us with styling for HTML elements, as well as some useful React components,
such as the Wizard, which we use in the Programs viewer when the user creates a new
program.

We connect the web interface to our main back-end server application through a Web-

Socket connection. We expose this on port 2697 of our server and make the connection
during the initialisation process of our React application. In the case where this Web-

5.6 Front-end:React web application

m

0 ~NOoO U WN

n
12

72

function connectWebSocket () {

websocket = new WebSocket (‘ws://${window.location.hostname}:2697/ws");
websocket.onopen = onSocketConnected;
websocket.onclose = () => {
onSocketDisconnected () ;
const reconnect = setInterval (() => {
clearInterval (reconnect) ;
connectWebSocket () ;
}, 2000);
}i
websocket.onerror = onSocketError;

websocket.onmessage = onMessage;

Figure 5.30.: The function which creates the WebSocket connection from the web interface to
the main back-end server application, which is executed on initialisation.

Socket connection is broken for some reason, for example, a temporary loss of internet
connection on the user’s device, we attempt to re-connect every two seconds. We show
these things in Figure 5.30.

5.6.1 State management

We engineer the front-end such that React components are as small as is practical, adher-
ing as much as possible to the single responsibility principle [58]. This is good practice
since it makes it easier to reuse components where needed, and simplifies and separates
logic, making it easier to maintain code. It does however mean that components can
easily become nested many levels down in the overall component tree. If we store datain
the state of React components, we may need to pass it down the component tree through
many components in order to get it to the component where it is needed (parameter pass-
ing). This technique is called “props-drilling” and is generally regarded as an anti-pattern
and thus avoided by React developers; this is because it can cause many problems when
developing, such as fragility and inconsistent naming of data.

For state data which we know will be used across multiple components, we use the Redux
open-source JavaScript library for maintaining and managing the global state of our
web application [1]. Redux stores a global state (a plain JavaScript object) separate of
React components, which along with reducer functions, are called the store. Reducers
are functions we define which take the state and an action, then returns the next state.
Components can access the Redux store by being connected to it using the connect ()
function. This allows them to use data from the state, as well as to dispatch actions
to reducers to modify the state.We show an example of this in Figure 5.31, where the
connect () can be seen on line 35. The connect function takes four optional arguments,
the first of which ismapStateToProps - a function which selects parts of the global
state object and passes them to the connected React component as properties, or props.

Chapter 5 Proof-of-concept: Diorama

o ~NoOUubdhWN

import React, { Component } from "react";
import PropTypes from "prop-types";
import { connect } from "react-redux";

class PreferencesDialog extends Component {

render () {
const { colourScheme } = this.props;
return (
<div ... >
<div ... >
<select defaultValue={colourScheme} ... >

</ééiect>
</&i§>
</éi;>
)i
}

function mapStateToProps (state) {
return {
colourScheme: selectCustomisation(state) .colourScheme

}i
}

export default connect (mapStateToProps) (PreferencesDialog);

Figure 5.31.: An example of our use of Redux with a React component.

We show the outline the global state of our Redux store in Figure 5.32, and explain some
parts of this in in-line comments.

5.6.2 Page routing

Other than the main elements of our user interface — the top bar and the navigational
side bar on the left of the screen — our web application consists of several different pages
and so we need a way of routing our web application. We use the open-source library
React Router for this [61]. In Figure 5.33, we show the top-level, or root React component,
calledDiorama. We see on lines 19 and 21to 27 the routes used in our web application, as
well as the React components for the pages for each of these routes. These are enclosed
within the BrowserRouter (which we have aliased as Router) component provided
by React Router. On lines 13 and 16, we have our fixed top bar (AppBar component) and
navigational side bar (SideNav component) respectively.

5.6 Front-end:React web application

73

20
21

22

74

customisation: { colourScheme: " ... " }, // user interface
customisations
programs: [... 1, // a list objects containing data for each node
program, such as runtime and code data
socket: { // WebSocket status
connected: false
}I
networkTopology: { // the user’s network topology
rawNetworkTopology: " ... ",
unpackedNetworkTopology: [... 1,
language: ’YAML'
}I
customConfig: { ... }, // advanced custom configurations
polyglot: { ... }, // Polyglot.js phrases for each supported language
simulationState: " ... ", // the stage of the simulation, including
initialised, setting up program images and running
simulationNodes: [...], // a list of objects containing data about
the Docker container representing each node in the current
simulation
simulationLogs: [...], // the output logs for each node container
simulationLogsFilter: { ... }, // user inputs for the output logs
filter
editingConnectionParameters: { ... }, // user inputs for the connection
editor modal for editing success rate and delays
connectionParameters: { ... }, // delays and success rates for each
connection in the user’s network topology
userEvents: { ... }, // user’s planned scheduled node action events
currentSimulationHash: " ... " // hash of the parameters used for the
current running simulation, in order to detect if changes have been
made since it started

Figure 5.32.: An outline of the state of our Redux store.

5.6.3 User event scheduling

We implement user-scheduled node action events, whose interface we described in
Section 4.4.3, using JavaScript timers. In the user event scheduler modal we show in
Figure 5.11, when each user adds an event, it is added to the userEvent s object in our
Redux state, shown on line 20 of Figure 5.32. When the user clicks the Run button in the
modal, we create timers for each scheduled event using the built-in set Timeout ()
method, as we show in Figure 5.34. These timers are set to send a message to the main
back-end server to execute the action on the chose node container (line 3) and display a
toast to the user (line 4) after the scheduled delay for the user event.

Chapter 5 Proof-of-concept: Diorama

O oo ~NOoOUu D WN

23
24

25

26

27

28
29
30
31
32
33
34
35
36
37
38
39

U h WN =

import { BrowserRouter as Router, Route } from "react-router-dom";
import

class Diorama extends Component {

render () {

return (

<Router>
<Fragment>
<AppBar />
<div ... >
<div ... >
<SideNav />
</div>
<div ... >
<Route exact path={"/"} component={ProjectHome} />
<div ... >
<Route exact path={"/docs"} component={Documentation} />
<Route path={"/docs/:interfaceLanguage"} component={
Viewer} />
<Route exact path={"/programs"} component={Programs} />
<Route path={"/programs/:programName"} component={
ProgramEditor} />
<Route exact path={"/network-topology"} component={
NetworkTopology} />
<Route exact path={"/custom—-config"} component={
CustomConfig} />
<Route exact path={"/simulation"} component={Simulation}
/>
</div>
</div>
</div>
</Fragment>
</Router>
)
}
}
function mapStateToProps (state) { ... }

export default connect (mapStateToProps) (Diorama) ;

Figure 5.33.: A code snippet showing how we use React Router.

orderedUserEvents.forEach(({ time, node: nid, action }) =>
setTimeout (() => {
Socket.send ("performNodeAction", { nid, action });
Metro.toast.create(‘'${action} ${nid}‘, noop, toastTimeout, "info");
}, time);

)i

Figure 5.34.: A code snippet showing how we use JavaScript timers to implement scheduled user

events.

5.6 Front-end:React web application

75

5.6.4 Use of selected third-party libraries

We select and describe three of the other three third-party libraries we have used in our
web application.

Ace code editor

B 1-{ // foo

2~ "single_nodes": [

3~ {

4 "nid": "alice",

5 "program”: "prog"
6 }

7 1,

8~ "node_groups": [

9~ {

10 "type": "ring",

11 "number_nodes": 4,
12 "program”: "ring",
13 "nid_prefix": "r",
14 ~ "connections": [
15 - {

16 "from": "r@",
17 "to": "alice"
18 }

19]

20 }

21]

22 1}

Figure 5.35.: The Ace code editor for users to edit their network topology.

For the user to edit their code for node programs or their network topology, we use the
Ace code editor [54], which we show in Figure 5.35. We chose to use this since it provides
several benefits to the user:

syntax highlighting, which is extensible for custom languages.
line number indicators.

included colour and font themes, as well as the ability to extend these with our

own custom ones.
automatic indentation.

the ability to drag and drop text.

76 Chapter 5 Proof-of-concept: Diorama

+ live syntax checker for some languages (this can be seen working on line 1in Figure
5.35, where there is a red cross).

Another advantage of using Ace was that it was straightforward to embed into our React
application using the React-Ace library [42], which gives us a React component, with a
simple interface, to work with. We tried to use several alternatives before settling on Ace.
CodeMirror [40] and Monaco Editor [52] were two particularly strong candidates, which
also offered the features we listed. However, their pitfalls were that they both required
more complex work to embed them into our web application — particularly the need for
using the webpack module bundler [32] directly.

Visualising network graphs with vis.js

We use the vis.js JavaScript visualisation library [4] to display graphical network graphs to
the user, as shown in Figure 5.6. This is a very powerful open-source library, whose very
wide range of customisation options allowed us to craft a viewer in the way that is most
well-suited to its purpose within Diorama. We especially make use of several particular
features:

formatted text inside nodes.

« mouse event callback functions (for when user double-clicks on an edge).

ability for user to move nodes around.
+ node groups so the same colour could be used for nodes running the same program.

Preparing for internationalisation with Polyglot.js and Moment.js

Since we knew that it would have been much easier than to do so from the start of writing
code than retrospectively, we used two internationalisation libraries in our web applica-
tion. This makes it much easier to in future, translate the application into languages and
locales other than British English.

We use Polyglot.js [3] to provide translations of all text displayed in our user interface.
Instead of writing such text directly in our React components (this is effectively hard-
coding), we dynamically load the strings to be displayed to the user, based on which
language in which they have selected to view the web interface. We use an additional
library, redux-polyglot [69], which is a toolset that allows us to store translations for each
language and the currently selected language and locale in the Redux state. In the code
base, we store non-capitalised translations of phrases in separate JavaScript files for

5.6 Front-end:React web application

7

78

each language. We show how this is used in Figure 5.36, where we translate the phrase
represented by the string, networkTopology.

To display dates and times in the user interface, we use the Moment.js library [44]. One
of the capabilities of this library is to format dates and times in localised formats; for
example, the short date format for 17TH June 2019 is 717/06/2019 in British English, but
06/17/2019 in United States English. Combining this with Polyglot.js allows us to have our
interface in different languages with appropriate date and time formats for the selected
language (and in some cases, locale). We create a DateTime React component, which
uses Moment.js and the Polyglot. js locale from the Redux state to display dates and
times in the appropriate localised format. This component is used throughout the web
application where dates or times are displayed to the user and is shown in Figure 5.37.

Chapter 5 Proof-of-concept: Diorama

O WO ~NOOUWN =

NNNNON S o 0o o o =
ORWNISOCcLOmIoOA~»WN D

A OWN -

—_

The NetworkTopology React component. The translation is dynamically loaded from
the Redux state on line 8:

import { getP } from "redux-polyglot";
class NetworkTopology extends Component {

render () {
const { p } = this.props;

return (
<Fragment>
{p.tc("networkTopology") }

</Fragment>
)i

function mapStateToProps (state) {
return
p: getP (state),

}i

export default connect (mapStateToProps) (NetworkTopology);

The British English phrases file, translations/en_gb. js:

export default {
networkTopology: "network topology",

}
The German phrases file, translations/de. js:

export default {
networkTopology: "Netzwerktopologie", // nouns in German must be
capitalised

Figure 5.36.: Code snippets showing how we use Polyglot.js and redux-polyglot for translating

user interface text.

5.6 Front-end:React web application

79

1 import moment from "moment";

2 import "moment/min/locales";

3 import { getLocale } from "redux-polyglot";
4 import

5

6 class DateTime extends Component {
7 render () {

8 const { locale, dateTime, format } = this.props;
9 return (

10 <Fragment>

n {moment (dateTime)

12 .locale(locale)

13 .format (format) }

14 </Fragment>

15)i

16 }

17 1}

18

19 function mapStateToProps (state) {
20 return {

21 locale: getLocale(state)

22 }i

23}

24

25 export default connect (mapStateToProps) (DateTime) ;

Figure 5.37.: The DateTime React component.

80 Chapter5 Proof-of-concept: Diorama

5.7 Installing and running Diorama
The source code for Diorama is stored across five public GitHub git repositories:

« diorama-web-ui - source files for our React web application (JavaScript).

https://github.com/mauriceyap/diorama-web—-ui.

« diorama-docs - user documentation, served as part of the React web application
(Markdown).

https://github.com/mauriceyap/diorama—docs.

« diorama-server - main back-end server, which the React web application connects
to (Python).

https://github.com/mauriceyap/diorama—-server.

+ diorama-node-logger - application which monitors output from generated Docker
containers and relays this to the main back-end server (Python).
https://github.com/mauriceyap/diorama-node-logger

+ diorama-node-base-python3 - base node program from which node program Docker
images for the Python 3 runtime are created (Python).
https://github.com/mauriceyap/diorama—node-base-python3.

We have created a deployment tool for prospective users to deploy Diorama to their exist-
ingvirtual machine using the Ansible deployment tool [62], which is stored on another pub-
lic GitHub repository — diorama-deploy at https://github.com/mauriceyap/
diorama—-deploy. This repository includes a README file which contains instructions
to useit.

Ansible deployment works by running a series of tasks. A task involves establishing an
SSH connection to the target machine, which is the VM on which the prospective user
wants to run Diorama, and then running some command to perform some action (or to
establish that there is no need to do so). We define a (ordered) list of tasks, called an
Ansible playbook, which when successfully completed, installs and runs Diorama. At a
high level, these tasks are (for the sake of simplicity, not in order):

+ installing Docker,

« installing and configuring Nginx to serve generated static files for the front-end
React web application on port 80,

+ installing and configuring Supervisor [2] to run the main WebSocket server and
node logger server,

5.7 Installing and running Diorama

81

https://github.com/mauriceyap/diorama-web-ui
https://github.com/mauriceyap/diorama-docs
https://github.com/mauriceyap/diorama-server
https://github.com/mauriceyap/diorama-node-logger
https://github.com/mauriceyap/diorama-node-base-python3
https://github.com/mauriceyap/diorama-deploy
https://github.com/mauriceyap/diorama-deploy

O~NOOU DA WN

NN NON 2 = o= oo oo =
Ol WNSNOoOLVComuNuOOOBRWNIOOL

82

« configuring systemd to run Supervisor when the VM is switched on.

language: node_7s
node_js:
- "stable"

notifications:
email: false

cache:
directories:
— node_modules

script:
- yarn build

after_success:
- zip -r build.zip build/

deploy:
provider: releases
api_key: $github_token
file: build.zip
skip_cleanup: true
overwrite: true
on:

tags: true

Figure 5.38.: The Travis C/ configuration file for the diorama-web-ui project.

We generate static HTML, CSS and JavaScript files for the front-end React application using
Travis CI [70], a hosted continuous integration service. We add the stable git tag to the
latest commitin diorama-web-ui which is ready to be deployed. We configure Travis Cl so if
apushed gitcommitifithasthisstable tag,itbuildsthestaticfilesforthe givensource
code, compresses them into a zip file and uploads them to GitHub Releases (https://
github.com/mauriceyap/diorama-web—-ui/releases). Weshow .travis.yml,
the Travis CI configuration file for the project in Figure 5.38, which shows all of these
steps.

Chapter 5 Proof-of-concept: Diorama

https://github.com/mauriceyap/diorama-web-ui/releases
https://github.com/mauriceyap/diorama-web-ui/releases

Evaluation

In this chapter, we evaluate the extent to which the Diorama proof-of-context meets the
goals which we designed for it to meet in Section 4.2, those we presented in Section 5.1,
as well as how our project as a whole meets the high-level objectives we set out in Section
1.1.

Ouraim for Diorama was, in essence, to be easy to set up and highly usable by students and
teachers alike, while providing them the functionality they need to create, test, demon-
strate and analyse their own distributed algorithms on their own networks. We wanted
the proof-of-concept to be a fully-working implementation which was immediately us-
able with lots of core functionality, but was also in a state which is easily extensible by
collaborators in the open source community.

6.1 Supported functionality

In Section 1.1, we set out to create an application where users are able to test distributed
algorithms by programming nodes, define how they are connected to each other, run
them simultaneously and observer their output in real-time.

Diorama provides users a way to program nodes in their network by letting them add to a
library of node programs which they have created. In the same way that AWS Lambda
requires users to create a handler function to create a serverless function, users of Diorama
create programs by implementing the main method of the node it is running on. Our API
is defined by the arguments passed into it; this APl provides simple methods to send
messages to and receive messages from other nodes which are connected to it, a feature
of several pieces of related work we explored and which we desired for Diorama in Section
3.8. One major desired feature which Diorama, at least in its current state, fails to achieve
is language agnosticism. Currently, users must use the Python 3 runtime to implement
their node programs. This failure came about because support for other languages was
given a very low priority relative to other features, and due to the limited time we had
to complete the project, it was not completed. We took this decision because building
Diorama to support one runtime in the way that we did demonstrates that we can easily
support for implementing nodes in other runtimes in future (we evaluate and support
this particular claim further in Section 6.4.1.

83

84

We want to be able to remove this
connection while the simulation is running.
alice bob

We can add a transit node in between alice and bob. Stopping it
and starting it removes and initiates the connection respectively.

Figure 6.1.: Suggested workaround for adding and removing connections during the running of a
simulation.

Through the network topology editor, users can define which nodes are in their network
and how these nodes are connected to each other using our network topology API. We
also provide users with a visualisation of the network they have defined in code and
allow them to give random or fixed dealys as well as message-passing failure rates to
any connection between any two nodes in their network. Whilst users can edit their
network topology as much as they want before simulating it, we fail provide a way to
edit their topology while a topology is running so that they can see the effect of changes
as they are made. This was a feature required by Leroy’s user journey, as well as one
we identified in related applications in Section 3 which we wanted Diorama to have. We
did not implement this feature, again, due to time constraints, however, we do believe
that this is technically feasible and present an outline of how we could achieve this in
future in Section 7.1. Using Diorama in its current state, we suggest a workaround for
adding or removing a connection while the simulation is running: if nodes alice and bob
are connected, we can indirectly connect them through an extra transit node, whose
behaviour is to simply pass messages through, and then stop and start this transit node
to effectively remove and initiate the connection between alice and bob. We illustrate
this in Figure 6.1.

Diorama achieves the aim of enabling users to simulate their network by running nodes
simultaneously and to view their outputs in real time. On our simulator page, in the node
manager tab, users can start, and stop individual or groups of selected nodes, while in
the log viewer tab, lines of output from each node are displayed, coloured according to

Chapter 6 Evaluation

the node. As required by Stacey’s user journey in Section 4.2.2, users can export this data
by downloading a CSV file, which can be opened in a spreadsheet software package, or
copy the data to their clipboard, which can be directly pasted into a new spreadsheet
document. In addition to the requirements of the user journeys, we enable users to filter
these output messages, so that only desired messages are displayed. This particular
feature would be useful to a lecturer demonstrating a simulation, particularly in a network
where there are a lot of output messages, in that it would allow them to focus on specific
messages and thus parts of the behaviour of the network.

6.2 Usability

One of the stated key objectives of this project was to create a solution which is “sim-

ple and quick to set up and use” (Section 1.1). To evaluate the extent to which Diorama
achieves this, we conducted user-testing with people who have never seen or used Dio-
rama. (Since we created, worked on and have used the interface for several months, it
would have been unreliable to us to exclusively assess this ourselves given our unusually
high level of familiarity and set opinions.) Our five volunteer testers were people from a
range of relevant backgrounds who had knowledge and experience in programming. In
this way, we could simulate how Diorama would be used and received by its intended
audience. Our five testers were':

+ Matt - a full-stack software engineer working at a large multinational financial
services company. He graduated from a top-20 UK university one year ago, having
studied Computer Science for four years. Matt took a course on Distributed Systems
as part of his degree and has a good knowledge of distributed algorithms, having
studied and implemented some himself. Matt also has very extensive programming
experience as well as experience of using and writing technical documentation for
programmers.

+ Gordon - a third-year Aeronautical Engineering student at Imperial College. He is a
proficient programmer, having had a summer internship working as a front-end
engineer for a large global technology company. He had never heard of, nor come
across any concepts in distributed computing, including distributed algorithms.

+ Nick-also athird-year Aeronautical Engineering student at Imperial College. He has

some programming experience and also didn’t know about distributed algorithms.

+ Alan - a fourth-year Computing student at Imperial College. He is an experienced
programmer and took a Distributed Algorithms course last year. As part of this

'The names are changed for sake of anonymity.

6.2 Usability

85

86

course, he studied, implemented, tested and analysed distributed algorithms by
creating networks using Docker containers. Like Matt, both Alan and Michael have
had lots of experience using documentation like API guides.

+ Amy - a second-year Computing student at Imperial College. She is an experienced
programmer, but has not studied or come across distributed algorithms.

6.2.1 User testing

We set each of our testers a series of tasks which would cover as much of the functionality
of Diorama as possible. We would observe whether or not they could perform these tasks
using our proof-of-concept application, how easy it was for them to do so and whether or
not they had any problems, and also take any verbal feedback. We wanted to avoid giving
too much guidance to our volunteers during their attempts to perform the set tasks, in
order to keep the test as accurate of a representation as possible of what real users would
experience when first using it independently. However, for the sake of saving volunteers’
time, we allowed ourselves to give pointers about aspects of the test not directly related
to the usability of our implementation, for example, using the Microsoft Azure interface
to create a VM instance, using the Python language, how to implement the given node
program (high level algorithm principles, not how to code it using our API) and YAML
syntax. After the test, we asked a series of questions to gather feedback.

All testers other than Gordon and Matt tested Diorama using laboratory desktop comput-
ers, each running Ubuntu Linux 18.04.2 LTS without sudo access, using Google Chrome as
the web browser. Gordon used a laboratory computer running 0SX 10.14.2, also without
sudo access, and using the Safari web browser. Matt used his own laptop, running OSX
10.15.5 with sudo access and using Firefox as his web browser.

We provide the guide document given to testers in Appendix C. The tasks we set were:

1. to create a virtual machine and use the installation instructions (provided in the
README file of the deployment tool repository) to install Diorama onto it.

2. to create three node programs: two already provided in publicly-accessible git
repositories (we provide these in Appendix D) and one to code using the in-browser

code editor.

3. using our API, to create a provided network topology (using just the single nodes
part of our API).

4. torun the nodes in the network they have created.

Chapter 6 Evaluation

5. to export the node output data to a spreadsheet.

6. tointroduce failure rates for particular connections in the network.

7. tointroduce delays for particular connections in the network.

8. to create a network topology using our AP/ which incorporates an automatically-
generated node group (namely a star topology).

We include the notes we took during user testing in Appendix E.

Setup and installation

Of our five testers, we only asked Matt, Amy and Nick to attempt to create cloud VMs
and to install the software onto them. Given the high level of computing experience
and technical setups of the other testers, it was safe to assume that should these three
selected users be successful in doing this, the others would be able to as well. Matt
and Amy were both able to install Diorama with no problems at all. The tool worked as
intended from a technical perspective, and none of the installation process required any
prompts from us, other than some help using Azure and selecting parameters (not related
to Diorama). Both Amy and Matt found the installation instructions clear and easy to
follow. Amy expressed that she liked the fact that after creating a VM, installation only
required running one single command. Nick struggled to use Microsoft Azure to create a
VM instance, perhaps because he had never set up a cloud virtual machine, nor in fact
used cloud services at all. I had to guide him on which parameters to select for each part
of the new instance setup. This was not part of the testing for our proof-of-concept, but it
was still useful to have observed.

After setup had been completed, we invited the testers to each implement the network
(programs as well as topology) described in the testing guide. We deliberately did not tell
them to navigate to the programs page. Every one of the five testers used the walkthrough
ofthe application onthe home page of the web application. Other than Matt, they all spent
some time reading the documentation to familiarise themselves with the programming
model before starting to implement the network.

Creating programs

All testers were able to create the first two programs, sender and receiver — whose code
we had written in advance and provided in a public git repository — with little trouble.

6.2 Usability

87

88

Both Nick and Gordon made the same mistake which had to be corrected, in that the
URL they entered for the git repository was that of the repository’s project homepage on
GitLab’s web interface, as opposed to the address of the repository itself. Amy copied the
code from the repository and pasted into Diorama’s in-browser code editor for the sender
program, which would have worked, but was not the user journey we had intended for.
We hinted that Diorama could import code directly from a public git repository, and this
prompted her to use the git repository code source for her receiver node program, as we
intended. Matt commented that this feature (directly importing a git repository) could be
very useful for students working in groups, since it allowed easy collaboration.

Gordon, Alan and Matt were all able to implement the relay program using our APl with
the behaviour which our testing guide had specified. Both Gordon and Matt remarked that
the APl documentation provided was very clear and they found it easy to read and use.
Amy and Nick were both able to independently write code to implement the core of the
node behaviour using our API (though Nick required some assistance with Python syntax).
Both their implementations had however not included the given constraint that only
messages not previously received should be re-broadcast to neighbouring nodes. Amy
also did not exclude the sender of a message when listing nodes to whom to rebroadcast
the message. Amy’s and Nick’s problems were not related to our web interface, APl or
documentation, so we thought it appropriate to suggests ways to correct these in their
algorithms. Alan had trouble finding the APl documentation accordion element on the
program editor page, so he opened the documentation to the side in a separate window.
Nick, though he found it eventually, also said that this was difficult to find as it was not
immediately obvious that it was there.

Defining and modifying the network topology

After creating programs, testers attempted to use our network topology API to define the
network we had illustrated graphically, made up of eight single nodes (i.e. no groups),
each running one of the three programs. All five volunteers were able to understand the
documentation for this APl and were all eventually able to produce the desired topology
correctly. Comments about the documentation itself were overwhelmingly positive.
Matt said that concrete code examples and accompanying ASCII art visualisations were
very useful to help understand the interface. One common struggle was using the YAML
language’s syntax. Nick, Gordon and Amy all required assistance with this, but this was an
aspect of our test. They all had the option to use JSON and documentation was provided
for the use of this language, but they all elected not to due to its undesirable verbose
nature.

Chapter 6 Evaluation

Later on in the test, testers were asked to add delays and failure rates to selected connec-
tions within the network. There was mixed success here — those who did notimmediately
see the bold text telling users to double click on connections in the network graph visu-
aliser in order to add such parameters naturally looked to the APl documentation to find
out how to do this (they would ultimately have been unsuccessful, so we pointed this out
to not waste time).

Matt, Alan, Gordon and Amy attempted to create another different network topology of
which we had provided an illustration (Step 3 of the user testing guide in Appendix C).
This topology included a star topology node group in addition to a single node. All testers
took a longer time to read and understand the documentation for creating node groups,
but with the exception of Amy, all were able to independently code what was required.
Amy required some prompting about the structure of the network topology definition
code when she was initially unsuccessful, but was able to achieve success afterwards (we
told her to re-read the first part of the documentation and did not explicitly tell her the
changes she needed to make).

Two common criticisms were made about the network topology editor and interface as a
whole: that delays and failure rates could not be defined in the code; and likewise, that
the option to make nodes self-connected was also not able to be defined in the code. At
the time of testing, these two aspects of the network were controlled through graphical
elements in the user interface — by double-clicking on connections in the graphical
topology representation and with a graphical switch respectively.

Nick, Gordon and Matt all said that the topology visualiser, which shows the user’s network
as a graph, was very useful for checking that what they had coded was what they had
intended, although Matt said that every time changes are made to the topology or any
connection parameters, the nodes in the graph all move to somewhere else, and this was
a minor annoyance.

Simulating the network and exporting output data

All testers were able to simulate their network by running generated nodes from the
simulation node manager tab, although there were a variety of ways that users tried to
start the nodes. Amy initially tried to schedule events to start them, before realising that
there were checkboxes next to each node which could be used to start them all together.
Both Alan and Gordon did not realise that these checkboxes could be used and started all
nodes individually using the start button of each one.

6.2 Usability

89

90

Oneissue that came up when setting up simulations was that on the first time a simulation
was set up, the generation of program images took a long time. This was because Diorama
needs to download the Docker image for the Python runtime (over 900MB) to create
images for Python node programs, but it only needs to to this once, so all subsequent
simulations would take significantly less time to set up.

They also didn’t have any difficulties in exporting the output data from nodes to a spread-
sheet - some elected to download a CSVfile and openiitin a spreadsheet software package,
while others copied the data to their clipboard and pasted it into a new spreadsheet doc-
ument. Matt remarked that this copy-to-clipboard feature was advantageous to him
personally because it meant he could avoid unnecessarily downloading a single-use file
which might have ended up staying in his Downloads folder for a long time, as many other
files do.

Evaluation of testing methodology

Since the proof-of-concept only came about to be in a usable state quite late into the
project, we unfortunately had much less time than desired to perform user testing. Had
more time have been available, we would have wanted to test its use by having a group of
similar students complete a real coursework exercise from our department’s Distributed
Algorithms course, with some using Diorama and the other others using some of the al-
ternative applications and methods available, which we explored in Section 3. We would
have then wanted to metrics such as time taken to complete certain tasks. We acknowl-
edge that such an experiment would demanded significantly more of each volunteer’s
time, and would have required a much larger test group.

Though the task we set our test users was designed to cover as much as the envisioned
user journeys and as many of the available features of Diorama as possible, there were
some small parts which it missed, for example, independently setting up a local VM (we
did not ask users to test this because restrictions on the university network add lots of
complexity); using our pre-made virtual machine images; scheduling node action events
and observing their effect on the network; and creating and uploading zip files.

We had a very small group of test users — five students or, in the case of Matt, recent
students. Though the sample size was small, there was good diversity in these five
volunteer participants in terms of skill and experience levels, from Nick, with relatively
little programming experience, to Matt, by far the most experienced (he had about a year
of industry experience, had completed a four-year Computer Science course at a high-
quality institution and also programmed for many years before university). This meant
that the test was somewhat representative of a range of students who would use Diorama.

Chapter 6 Evaluation

Our test group did not include any individuals who represented lecturers who would use
Diorama, like our persona, Leroy. However, we can reasonably assume that since most
lecturers likely to teach about distributed algorithms would have more programming
experience and skill, they would probably not have found Diorama any more difficult to
use than our test group did.

Results and changes made and planned in light of testing feedback

Although our sample size of five people is small, albeit diverse, the user testing we carried
out with them has provided us with useful feedback about the usability of Diorama in its
current state and gave us a clear list of potential modifications to improve this aspect of
the application. Ultimately, all users were generally able to perform the tasks we had set
using Diorama’s web user interface, and there were no major problems with using the
provided functionality of the application.

We learned from Nick’s testing experience that setting up a cloud virtual machine can
be a challenging step for some students — particularly those who don’t have extensive
experience with cloud services. One of the key objectives of this project was to be sim-
ple and accessible to students studying distributed algorithms from different technical
backgrounds, by mitigating the need to learn other technologies so they can focus on the
algorithms themselves. We can mitigate this problem by creating step-by-step guides
for users on how to create cloud virtual machines with different providers. Furthermore,
using virtual machine images which we have created — both for cloud providers and
hypervisors — is a way to install Diorama which is significantly more straightforward.

In the program editor, if the user selects a public git repository as their code source, we
have seen that there can be ambiguity as to which URL to provide. This could be especially
true in a situation where a lecturer has provided the code for a node program to their
students by giving a link to a git repository’s project homepage (this is effectively what
we did in our testing instructions). We have now removed this ambiguity by adding some
guide text which explains exactly what URL the user should enter.

User testing has shown that on the program editor page, the button which displays API
documentation does not appear prominently enough, since users had trouble seeing it
was there. We have therefore moved this button closer to the code input part of the page,
and made it more visible by increasing the size and weight of the label font.

Positively, the APl documentation we have provided for both writing node programs and

defining the network topology was found to have been clear and detailed enough to be
used for their purpose.

6.2 Usability

91

0O~NOOU DA WN <

- —_
N Do o

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

33

92

Our testers found our method of defining a network topology through code powerful
and each eventually got to grips with it after spending time reading the documentation —
they were able to use it fluently to define a network topology presented to them visually.
Although thisis satisfactory, we could make the creation of network topologies even easier
by giving users a visual editor to define nodes and the connections between them.

single_nodes:

node_groups:

Addition of self-connected nodes switch
all_nodes_self_ connected: YES # or NO (boolean value)

Addition of success rates - if the user doesn’t include a connection
here, it is given the default value of 100%
connection_success_rates:
- from: alice
to: bob
percentage_rate: 67

Addition of random or fixed delays in ms - if the user doesn’t include
a delay here, it is given the default of a fixed Oms delay (that is,
no delay)

connection_delays:
- from: alice
to: bob
type: fixed
params:
value: 1200 # a 1200ms delay for all messages between alice and bob
- from: bob
to: charlie
type: normal
params:
mean: 3000
variance: 90000 # a normally-distributed delay, with mean 3000ms and
variance 90000ms (or standard deviation 300ms)

Figure 6.2.: Suggested change to our network topology API.

Reflecting upon the constructive criticism that some testers raised, about connection
delay and success rate parameters not being part of the code which defines the topology,
we do accept that this seems somewhat illogical. These parameters are, in effect, part
of the effective substance of a network topology. Likewise, we have a graphical switch
which determines whether or not all nodes are connected to themselves. For both these
aspects, it does seem to make more sense to have them set as part of the topology
definition code. A further disadvantage of not having these in the code, is that it is not
possible for users to simply share these parameters with other users, by sending the

Chapter 6 Evaluation

code. A user receiving this network topology definition code (for example, a student
from their lecturer, through a coursework specification) would have to perform further
actions on the graphical interface, in order to obtain the same network topology setup.
Currently, since this is not the case, two users with the exact same node program code
and the same network topology definition code could have simulated networks with
vastly different behaviours, and thus vastly different results. We will therefore change our
network topology APl in future to include these parameters. We suggest a way of making
this change in Figure 6.2. We may keep the ability to change these parameters graphically,
since users may find it useful; however, should we do this, we will automatically make
relevant changes to the code in the editor as changes are made graphically.

In response to observations made my testers, we will make changes to the graphic network
topology visualiser. In exploratory testing, though not part of the set task, Alan discovered
that the visualiser finds it difficult to display large networks with many connections. He
found that a large fully-connected network with 30 nodes would cause the nodes in the
visualiser to uncontrollably bounce around. Furthermore, Matt pointed out that when he
changed connection delays and success rates, the nodes in the visualiser would change
position, despite the shape of the topology having not changed. We will attempt to fix
these two issues by changing the parameters we pass to the vis.js library, or otherwise, if
this is unsuccessful, we will look into using a different library for visualising graphs. We
could also allow users to selectively hide nodes from the visual topology viewer.

In the node manager tab of the simulation page, many test users did not independently

and immediately see that it was possible to select all nodes by ticking a single checkbox.

We will try to make this feature more obvious, perhaps by making small changes to the
visual design, or by displaying a dismissible hint in a non-intrusive way.

6.2.2 Comparison to directly using Docker

For several assessed and unassessed exercises on a Distributed Algorithms course taken
as part of our degree, Alan and | had previously used Docker for implementing and testing
distributed algorithms, then analysing the results they produced when run. It involved
downloading images, creating containers to run our own code and handling networking
for these containers. The process involved spending a significant amount of time reading
and understanding Docker documentation. We both found that using Diorama instead to

perform similar albeit slightly simpler tasks, much simpler and easier than using Docker.

It took much less time to go from no code or setup, to obtaining output from a simulated
self-defined. This is one key advantage that Diorama presents.

As we mentioned in Section 3.4, another big advantage which Diorama has over using
Docker directly, is its ability to define more complex network topology shapes. In a Docker

6.2 Usability

93

94

bridge network, everything is, in effect, fully connected, since all containers (nodes) on
a network can send and receive messages to and from every other containeriniit. If a
user wanted to equivalently simulate complex (or even non-fully-connected) networks,
they would have to, for example, implement this in their node programs by ignoring and
selectively sending messages, or modify iptables rules for different containers.

Since Diorama is an application which users access through a graphical web user inter-
face, they do not need to use the command line. The our graphical interface is designed
to be (and has been proven by user testing to be) self-explanatory; it requires no docu-
mentation to use. In contrast, users using Docker directly must use the command line
to generate images and containers, which requires learning commands through reading
documentation, and using the command line. Though experienced programmers would
likely have little problem with this, less experienced programmers, particularly those
who have never used Docker before, would find this more challenging.

The main disadvantages of using Diorama over Docker directly stem from the fact that
in simplifying things for users, users have much less technical freedom in aspects of
creating their network. One example is in how we have defined the node program API.
Our programming model is a synchronous one, designed around a blocking message
receiver. If a user preferred, or needed to program in a more asynchronous way using
event handlers, such as the one used by JBotSim (Section 3.2), they would need to adapt
the interface we have provided, for example by using multithreading. Another limitation
for users is that they are not able to use runtimes and languages which we have not
implemented, whereas using Docker directly would allow them to easily use any runtime
for which an image has been created on Docker Hub.

6.2.3 Conclusion

Notwithstanding some of the issues described, we conclude that Diorama is to a large
extent, usable and user-friendly — users were generally able to use its functionality to
perform desired tasks, and the web user interface appeared to be self-explanatory for
the most part. We believe that based on this, our hypothetical personas would be able to
use Diorama to follow their envisioned user journeys; however, we have identified lots of
areas for improvement to enhance usability. This was certainly to be expected, as what
we have created and tested is a proof-of-concept application, whose implementation
prioritised a large amount of functionality over production-quality usability.

Chapter 6 Evaluation

6.3 Portability

We desired to create a solution which easy to install and use on a wide range of platforms
and so assess how well we have achieved this.

6.3.1 The web interface

Our approach to making Diorama compatible and accessible across different platforms
and environments has been to rely on the fact that its interface exists as a web application,
and the assumption that modern web browsers are available on all popular operating
systems. Diorama’s single strict system requirement for accessing and using its interface
(other than, of course, an internet connection) is a web browser which supports common
and extensively-used technologies, including Javascript 5 (ECMAScript 2009), HTML5, CSS
and the WebSocket protocol. We conclude that we have successfully made this aspect of
Diorama very portable; it can be used on any desktop, laptop or even mobile or tablet
device? which has a modern web browser installed.

6.3.2 Theserver

This interface and all underlying back-end services, are served from a single virtual ma-
chine running Ubuntu Linux with sudo access. Currently, all users wishing to use Diorama
must create one themselves. The two methods we have set out for users to access this
is to create and run one locally using hypervisor software, or to create a cloud virtual
machine instance with a cloud services provider.

The first of these methods requires a machine with an operating system which canrun a
hypervisor, as well as sufficient system resources (namely processing power, memory and
disk space) to run a virtual machine on top of the host operating system. Since Ubuntu
Linux is a free and open-source distribution of Linux, it is free and readily available to
download from the web [15]. We consider VirtualBox, which exemplifies a free and open-
source hypervisor. VirtualBox is available on Microsoft Windows, Apple macOS and many
Linux distributions. Its stated requirements are “reasonably powerful x86 hardware” and
as much memory as is required by the virtual machine’s operating system plus that by
the host operating system. Users also require the hard drive space required by the virtual
machine, plus around 30MB for VirtualBox itself [57]. Our test installations of Diorama
on Ubuntu Server 18.04 LTS have used around 3.5GB of disk space, and 8GB of memory
has been sufficient. From these considerations, we conclude that this method would be

2We have tested to ensure that Diorama works on smartphones and tablets running recent versions of
Android and Apple iOS.

6.3 Portability

95

96

accessible to practically all users using a reasonably powerful personal computers? (Stack
Overflow’s 2019 Developer Survey found that 99.9% of developers use one of Microsoft
Windows, Apple macOS or a Linux distribution [56]).

The other method usually requires users to use a cloud service provider’s web interface
to create a virtual machine instance, which can be accessed through the internet. In this
regard, the only requirement on a user’s device is that it has a web browser installed,
which can display and use this web interface. Some educational establishments may
provide students with in-house cloud services through which virtual machines can be
created*. However, we must also consider the fact that for public cloud service providers,
thereis afinancial cost to creating and running a cloud virtual machine instance. Although
the cost of this is relatively low, in the realms of £0.07 per hour®, it could still be an obstacle
to some students.

6.3.3 Theinstallation tool

If a user is using one of the cloud providers or hypervisors we provide VM images for,
they are able to set up and use Diorama without our installation tool. Our installation
tool uses Ansible, which requires a Unix operating system and Python (Python comes
pre-installed on most Linux distributions and Apple macQS). Ansible can also be run on
Windows 10 using the Windows Subsystem for Linux® [63]. The installation tool for Diorama
can therefore be used on personal computers running Linux, Apple macOS and Microsoft
Windows 10.

6.3.4 Conclusion

The way in which we have built and published Diorama has ensured that it can be used
on personal computers running all widely-used operating systems. A user’s operating
system is therefore unlikely to prevent them from using Diorama.

However, notwithstanding our best efforts to mitigate potential issues for users through
publishing virtual machine images and a cross-platform deployment tool, the fact that
Diorama requires a virtual machine to install and run is less than ideal from the stand-
point of portability. Ultimately, the bottom line is that users must either be able (and

3By “personal computer”, we mean any laptop or desktop device.

“*For example, the Department of Computing at Imperial College London provides its students with an laa$S
private cloud service [43].

*We consider the on-demand pricing of three cloud virtual machine offerings, each with 2 vCPUs and
8GB memory and running Ubuntu Linux: Microsoft Azure’s B2MS costs £0.0621 per hour [51]; AWS EC2’s
t3a.large costs £0.0752 per hour [5]; and Google Compute Engine’s n1-standard-2 costs US$0.095
per hour [35].

fAnsible does not officially support the Windows Subsystem for Linux, but it does work. We have also tested
our deployment tool on the Windows Subsystem for Linux.

Chapter 6 Evaluation

willing to pay) to create and run a cloud VM instance, or be using a machine which is
capable of running a virtual machine. It is very much possible that there are a minority of
prospective users who would not be able to do either of these, for example, if they have a
low-specification laptop and do not have a debit or credit card to pay online for cloud
services.

One particular way to eradicate this potential issue would have been to make Diorama
a hosted service which can be set up and installed on one machine, and that multiple
users can use remotely, like the online IDEs we mentioned in Section 3.6. In our context, a
lecturer (who is much less likely to be unable to meet these constraints) could set this up
and students could simply connect to and use Diorama on their web browsers through a
web connection.

6.4 Extensibility

We identify several areas in which the proof-of-concept could be extended in future, in
order to be made more useful for students and teachers, and evaluate how easy it would
be to extend these.

6.4.1 Node program runtimes

We have structured our diorama-server repository so that all base node program files
reside in the base_node_files directory as git submodules. In order to add sup-
port for a new runtime, we would need to write the base node program files for it,
publish it as a public git repository, then simply include this repository in diorama-
server/base_node_files asasubmodule.

Itisalso quite simple to add a new runtime to our front-end. We need to add the runtime to
the list of runtimes available when creating and modifying programs. We have structured
our code so that this information, as well as all data associated with runtimes, for example
icons, display names and default code is defined in one single place which acts as the
source of truth for this - src/components/Programs/constants. js, which we
outline in Figure 6.3.

We must also add documentation for new runtimes to show users how to write code in its
language. All user documentation which can be accessed from the front-end is stored in
the diorama-docs git repository, and each runtime’s documentation is a Markdown file,
with the runtime as the filename. Adding a new runtime’s documentation simply involves
creating and writing Markdown file in this repository and renaming it to the name of the
runtime.

6.4 Extensibility

97

0 ~NOoO U WN

NN NNNONRNRNON S o o oo =
Nou Bl wWNISNoo0omIoonANOIOL

O o0 ~NOULPA WN <

98

import pythonIcon from "./runtimeIconImages/python.png";
import

export const runtimes = ["python3"];

export const runtimeIcons = {
python3: pythonIcon
i

export const runtimelLabels = {
python3: "Python 3"
bi

export const braceEditorModes = {
python3: "python"
}i

export const defaultCodeDataForRuntime = ({
python3: {
code:

"def main (peer_nids, my_nid, send, receive, storage):\n" +
" while True:\n" +

" message, sender_nid = receive () \n" +
" print (f’ {message.decode (\"utf8\")} from {sender_nid}’)\n",
dependencies: ""
}
}i
Figure 6.3.: An outline of program runtime constants in

src/components/Programs/constants. js of diorama-web-ui.

Given these things, we conclude that it would be very straightforward to add a new node
program runtime, and we should put what we have described in a contributing guide in
future.

6.4.2 Network topology definition mechanisms

import yaml
import json

parsers: Dict[str, Callable] = {
(

"YAML’ : lambda raw: yaml.load(raw, Loader=yaml.FulllLoader),
"JSON’ : json.loads

topology = parsers[language] (raw)
Figure 6.4.: A code snippet showing how we parse raw network topology definitions.

We currently allow users to define the shape of their network topology in the JSON or
YAML languages. We show in Figure 6.4 how we process the user’s raw code for the main
back-end server. In order to add support for a new serialisation language, such as property
list or XML, we need to add a parser for the language to the parsers dictionary shown

Chapter 6 Evaluation

on line 4. This parser needs to take in the raw code and return a Python dictionary object
in the same schema as our current design. On the front-end, the changes needed to add
support for a new language would be trivial, since it just sends to the back-end server the
raw string which the user has inputted.

A limitation of our current design for processing raw network topology code is that to
change our schema would be a more complex task. We would need to make changes
to the methods which turn a parsed topology definition Python dictionary into a list of
nodes, which are spread over around 20 helper methods, albeit all adjacent to each other
in the same file (network_topology.py inthe diorama-server repository).

Like for node programs, user documentation for defining network topologies is stored
in the diorama-docs git repository as separate Markdown files for each serialisation lan-
guage.

6.4.3 Frontend localisation

Aswe explainedin Section 5.6.4, our front-end isin already a state where it can be localised
for different languages and locales. With our current design is very easy to add translations
for new languages. All the existing filesinthe t ranslations/ directory of the diorama-
server repository each default export an object which contains the translations of all
phrases for their language, as we show in Figure 5.36. To translate Diorama into a new
language, we need to duplicate one of these files, rename it to the /SO 639-1 code of
the language and replace all values of the object in the file with translations for each
phrase.

To demonstrate this, the Diorama proof-of-concept application currently supports the
languages, English (United Kingdom), English (United States) and German.

6.4 Extensibility

929

Conclusion

Implementing distributed algorithms and experimenting with them by modifying them
and observing the effects of such changesis an important and effective way for students to
gain a greater understanding of them. We have presented the design and implementation
of a new application, Diorama, which not only facilitates this, but has it as its sole focus.
Diorama minimises time wasted by users on things not directly related to distributed
algorithms by being quick and easy to get up-and-running, and by avoiding configuration
and features which are not directly relevant — instead — providing a rich and powerful
platform on which students and teachers can create their own algorithm implementations,
define their own network topology and run, analyse and demonstrate it.

We have shown through our evaluation that Diorama, even in its current proof-of-concept
state, but certainly after a few changes and with the addition of more features, has excel-
lent potential to be used for teaching and learning in the real world. We hope to develop
the Diorama project further over the coming months and years to work towards achieving
this, and invite members of the open source and computing education communities to
contribute both code and ideas in order to progress it further.

7.1 Future work

We identify several ways in which we can move the Diorama project forward, from a
functional rough-around-the-edges proof-of-concept implementation which has some
deficiencies, towards a production-quality open-source application, ready for use by
students and teachers.

An active collaborative open-source project

Currently, Diorama is technically open-source, in that all source code is freely available
on GitHub. We can make it a well-maintained open-source project which accepts contri-
butions from the community (pull requests on GitHub) by creating a contribution guide
and managing the feature roadmap of Diorama using GitHub projects. This would likely
help to improve Diorama with improved functionality and stability, making it more ideal
for teaching and learning.

101

102

Additional node program runtimes

Our proof-of-concept application currently provides users the Python 3 runtime to use to
program their node programs. In future, we want to make more runtimes available so
that users are able to use a range of languages for this. This will involve creating a new
base node program for each new runtime and publishing it as a new git repository. We
have described how to do this in Section 6.4.

Live network topology editing

One major desired and planned feature which we did not implement in our proof-of-
concept was live editing of a network topology while a user’s simulation is running. This
is a feature we want to implement in future. One way we could implement this would
be to create an extra Docker container for each simulation — a control container. This
control container would send commands to all node Docker containers, informing them
of changes to the network topology, and then nodes would update their configuration
accordingly, for example, by making changes to theirnid_connectionsfile.

Usability improvements

We could, with permission, collect and analyse data from users about how they use the
web interface in an effort to improve its usability. One way we could do this is by using a
user feedback tool. Hotjar is an example of such a tool, whose features include collecting
heatmaps and recordings of user activity, such as scrolling, clicking and navigation [41].

We could also make additions to the user interface to make it more accessible to users.
We currently support user-chosen colour schemes, but the two currently included colour
schemes have been designed with a focus on aesthetic. To assist visually-impaired users,
we could create a high-contrast colour scheme, following guidelines suggested by organ-
isations which specialise in this area. We could also create a visual mode where text is
made easier to read by, for example, making text bigger and increasing font weight.

A hosted service

In future, Diorama could be offered as a hosted service, either by us, or by educational
institutions. The motivation behind this is that multiple users would simply log in to their
respective user accounts on the Diorama service and use it as normal. A big advantage
with this is that users would not need to perform any installation. It could also allow
educators to access students’ work or results to asses it or track progress, as well as

Chapter 7 Conclusion

remotely collaborate with them. To implement this, we could spin-up a virtual machine
for a user on the server each time they log in. We may also need to centrally manage IP
address spaces for node Docker containers in order to prevent clashes; we could do this
by assigning each user a different address space their containers can use.

7.1 Future work 103

Example network topology code

in JSON

{
"single_nodes": [
{
"nid": "alice",
"program": "prog"
1
I,
"node_groups": [
{

"type": "ring",

"number_nodes": 4,

"program": "ring",

"nid_prefix":

"connections": |
{

"from": uron,

no.n

r,

"to": "alice"

"type": "star",
"hub_program": "hub",
"hub_nid": "hubert",
"number_hosts": 3,
"host_program": "host",
"host_nid_prefix": "ho—",
"host_nid_suffix": "—st",
"host_nid_starting_number": 1,
"host_nid_number_increment": 2,
"connections": |
{
"from": "ho—1-st",
"to

",

"alice"

"type": "tree",
"number_levels": 3,
"number_children": 2,
"programs": [

105

"tr_root",
"tr_l1",
"tr_l2"
1,
"nid_prefixes": [
"root",
nan
np
1,
"connections": [
{
"from": "root0",
"to": "r2"

106 Chapter A Example network topology code in JSON

Installation guide

B.1 Pre-made images

Instructions can be found at https://mauriceyap.github.io/diorama.

B.2 Forlocal VMs

For example, VMWare Workstation Player or VirtualBox

This is taken from the README at ht tps : //github. com/mauriceyap/diorama-deploy.

B.2.1 Pre-requisites

Your real machine

You need Python (either 2.7 or 3.5+ are okay) installed on your Unix machine, as well as
pip. Unless you’re using Windows 10’s Subsystem for Linux, Windows isn’t supported, so
sorry if that’s what you’re using. You can find out if you have these already installed by
runningwhich pythonandwhich pip.

Next, install Ansible by running sudo pip install ansible.

If you don’t have permissions to run sudo, run it without, and then inside the deploy. sh
file, replace ansible-playbook with the path to your ansible playbook executable
(forexample, /.local/bin/ansible-playbook).

Your virtual machine

Set up an Ubuntu VM - you could use VirtualBox or a cloud VM provider like Microsoft
Azure. These scripts have been tested on Ubuntu Server 18.04.2 LTS.

107

https://mauriceyap.github.io/diorama
https://github.com/mauriceyap/diorama-deploy

108

Make a user accounton your VM which has **passwordless sudo access**. There’s a helpful
article here if you’re not sure how to do that: https://www.cyberciti.biz/faq/

linux—-unix-running-sudo-command-without—-a-password.

B.2.2 Deploying
./deploy.sh IP_ADDRESS_OF_YOUR_VM USER_ACCOUNT_NAME
Forexample, . /deploy.sh 192.168.0.123 alice.

Hopefully, that will run. After it’s finished, you can open the web interface by visiting your
VM’s IP address in your browser.

Chapter B Installation guide

https://www.cyberciti.biz/faq/linux-unix-running-sudo-command-without-a-password
https://www.cyberciti.biz/faq/linux-unix-running-sudo-command-without-a-password

Guide for test users

Notes for testing Diorama

What did I sign up for?!

Firstly, thank you so much for taking part in this testing session! | really appreciate you generously giving your
time for this! Diorama is a piece of software I've created for my Final Year Project. It’s a simulator for distributed
algorithms, which are algorithms that run on networked computers (“nodes”) that can only communicate with
each other by passing messages to each other. Diorama lets you create your own programs which run on nodes, as
well as your own network topology - how your network looks, what node is running what program and which nodes
are connected together.

What’s the point of Diorama?

It’s designed to be used by two groups of people - educators (teachers, lab demonstrators, lecturers and the like) to
demonstrate distributed algorithms, and learners (students) to implement, test and experiment with distributed
algorithms.

How long will this take?

Hopefully, half an hour at most. If it takes much longer, | owe you a beer or other alcoholic or non-alcoholic
substitute. You have that in writing.

Step 1:installation

I’m going to be watching what you’re doing, taking notes and timing how long you take to do things. Try to
ignore me, and just take your time - treat it as if you were alone doing this as an unassessed exercise!

I've logged you in to my Microsoft Azure account so that you can create a cloud VM using my credit. You can also
use my ssh key if you’re using my lab machine: .ssh/id_rsa.pub. We need access to ports 80, 22, 2697 and 2698.

Go to https://github.com/mauriceyap/diorama-deploy, clone the repo and follow the instructions in the README. If
you’re on a DoC lab machine, you need to checkout the branch, doc-lab-machines.

At the end of this, you should hopefully see something like this in your browser:

Welcome to Diorama

Loarn how to use Dioramato Read the documentation for
create and run your first
simulation

Showmebaw!

109

110

Step 2: make a network

Create this network:

“sender” node program - I've already made this. It’s here at this git repository:
https://gitlab.doc.ic.ac.uk/mlyl5/sender-diorama. The node’s “main” function is sender.main.

“receiver” node program - I've also made this https://gitlab.doc.ic.ac.uk/mlyl5/receiver-diorama. And the “main”
function is receiver.main.

“relay” node program - this is for you to implement. For every message the node receives, it should send it to all
the nodes it’s connected to other than the sender of that message if and only if it hasn’t received that message
already.

The topology should look like this. Node IDs (nids) are in bold, programs in italics underneath inside every node.
Hint: you don’t need to use worry about node groups for this. Just use single_nodes.

~
liz theresa david vicky
sender) relay) relay) receiver

J
))) '

gordon tony john margaret
relay J relay) relay) relay)

Run the entire network for roughly 10 seconds. Put the output data into an Excel spreadsheet.

Now we want to make the connections between nodes a bit more unreliable. Make it so that every one of the
connections fails to pass a message 10% of the time. Run the network for about 5 seconds and put the output data
into the second sheet of the spreadsheet.

Make the connection between gordon and tony slow. Give it a random delay - delay should be normally distributed
with a mean of 1,400ms and variance of 90,000ms. Also, make the connection between david and vicky fail to pass
messages 80% of the time. Like before, run that for 5 seconds and put the output data into the third sheet of the
spreadsheet.

Save the spreadsheet and if you’re on your own computer send the spreadsheet to me (Facebook, email etc.).

Step 3: make a star network

Make a completely new network topology using the same programs. It’s got 2 parts - bbc and personl...person8 are
a star network (bbc is the hub and the other 8 nodes are hosts); malcolm is just a single node. Hint: use the star node
group.

Chapter C Guide for test users

personl person2 person3
receiver receiver receiver

malcolm
sender

person8 bbc person4
receiver relay receiver

person7 person6 person5
receiver receiver receiver

Run all the nodes for 5 seconds.

Final remarks

Thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank
you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you
thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank
you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you
thank you thank you thank you thank you thank you thank you thank you thank you thank you thank you thank
you thank you thank you thank you thank you.

User testing node programs

sender.py

from time import sleep

def main(peer_nids, my_nid, send, receive, storage):
counter = 0
while True:
for nid in peer_nids:
message = f"Sender message {counter}".encode ()
send (message, nid)
sleep(0.5)

counter += 1

receiver.py

def main(peer_nids, my_nid, send, receive, storage):
messages_received = set ()
while True:
raw_message, nid = receive()
message = raw_message.decode ("utf8")
if message not in messages_received:
print (message)
messages_received.add (message)

13

User testing notes

For each of our volunteer test users, we give a raw transcription of the notes we took
during testing, followed by verbal feedback that was given during testing or afterwards
by the tester.

E.1 “Matt”

3:55 to install ansible and get set up with repo readme
2:35 to install Azure VM
4:14 to install everything onto the VM ansible

 5:50 to create programs
+ T:43 to create network topology
+ 1:50 simulation 1-run and export

4:10 simulation 2 - edit connection parameters

3:05 simulation 3 - edit connection parameters
8:15 step 3. Took a long time to read API. Optional stuff added to text. Found
example code and ASClII art illustrations in the documentation useful.

API documentation was good for making programs and for the topology. Bit less
detailed than most stuff I've used, but there’s definitely enough information and is
well-written.

(About the programs page and editor) It was easy to navigate because the interface
is nicely designed. The direct git import feature is really cool, it’s probably going to
really useful for students, especially if they have group projects.

« (About the network topology editor page) Asmall annoyance but it’s really minor. The
nodes in the visualisation for the topology move every time | make changes to it so it
was hard to immediately see what | had changed. The interface was nice and simple
and easy to use. | liked that there wasn’t anything unnecessary there. | thought it
was weird not putting the connection editing stuff [delays and failure rates] in the
code bit, but it’s probably my fault for missing the massive bold text that tells you to
double click on the lines to change stuff.

« (About the simulation viewer) Layout is good. | really liked the "new changes have

been made" badge in the "stop and reset" button. The checkboxes for selecting

multiple or all nodes is useful. The copy to clipboard button on the output viewer tab

115

116

E.2

is nice because it means | don’t have to download a CSV file if | don’t want to clutter
my Downloads folder with yet another single-use file.

(Overall comments) It takes a while for the simulation to load. Overall | really like it
and the interface looks really nice! It’s really easy to use because it’s obvious what to
click to do stuff.

“Nickll

Never set up a cloud VM or used cloud services before, so found it difficult to set up
a VM instance on Azure.

10:48 to create VM, set it up with Diorama and get it all running from starting to
read README file.

12:28 to create all three programs. Had to correct him with which URL to use for the
git repo. It’s the .git one when you git clone, not the address to the web viewer for
the GitLab repo.

Had to correct algorithm - forgot about unique messages. | suggested using a set to
store received messages.

Had to help with writing Python. For-loop and if-statement syntax, API for set()
object.

10:30 to create network topology. Had to help with YAML syntax - indentation
especially. Had to remind him of two-way connections. He initially started by
defining every connection both ways.

4:08 - run and export. Images took a long time to create.

Didn’t fully do tasks for editing connection parameters, but | made sure he was able
to do it for one. Spent ages reading topology documentation looking for how to
add delays and failure rates, but | had to point him in the right direction.

Setting up VM is difficult, you should specify system requirements for it. Installing
Diorama is fine though.

Program editor page, APl guide accordion isn’t immediately obvious.

Put “all nodes connected to themselves” into the syntax of the topology.

The graph viewer when you click save is useful to see what you’ve done.

Like the programs interface, it’s easy to use.

Like the Ul overall. It’s generally easy to use.

Chapter E User testing notes

E.3 “Alan"

+ Alan used a VM | had created with Diorama already installed. | asked him to have a
quick read through of the installation instructions and he said it was good and he’d
probably be able to follow it.

+ Testing was very unfocused. He wanted to play with the application and explore as
much as possible instead of focusing on following the tasks | had set. He was able
to do everything eventually though and found everything impressive.

+ Alan defined a very large network, with 30 fully-connected nodes. This caused the
nodes in the graphic network topology viewer to spontaneously bounce around
quickly and uncontrollably.

« You shouldn’t show the start simulation button when you don’t have programs or a
network yet.

o This is much better than what we did for the coursework [last year] with Docker. |
spent lots of time on that making it work.

E.4 “Gordon"

+ Gordon was able to do all the tasks. For sender and receiver programs, he pasted
the wrong link into the input box - gave URL of GitLab, not of the repository, ending
in.git.

+ Spent a lot of time reading the documentation for both the programs and network
topology APIs. | had to give him some pointers about what to ignore (and was
irrelevant to the tasks set) to save time.

+ Simulation page - didn’t realise you could select nodes and start all nodes at once.

o It’s pretty nice, | quite like it.

« Self-connected nodes thing [switch] isn’t obvious enough.
« Interface and instructions were very clear.

« Strange that you can’t add delays in the topology code.

+ The network topology visualiser is useful.

E.5 “Amy"

+ Setup was quick and no problems. | had to prompt her to change port rules because
she forgot about this.
+ Spent quite a while reading everything before starting.

E.3 “Alan" 17

118

Tried to copy and paste code from git repo into text editor (and use raw code as
source). | let her do this for “sender” but pointed out the import from git function
for “receiver”. Had to correct her implementation or “relay” because it originally
didn’t check that message hadn’t already been received and also sent back to the
sender of the original message each time message received.

| coded the rest of the network topology to save time after she had done the first
two nodes to prove she understood the API.

On the simulation page, she initially tried to start all nodes by scheduling events.
Took some time to find where to click for output tab.

No problems adding delays and success rates to connections in the network. She
immediately saw the bold text saying to double click connections to add these
parameters.

Took a long time to implement the star network (over 10 minutes) but eventually
did it. Initially confused about the structure of the YAML file. She had started simply
listing all the nodes and node groups at the top level, but | pointed out the first
section of the API documentation about the overall structure of the YAML code.

Setting everything up was easy.

The instructions are easy to follow.

I like how easy it is to install. It’s nice that it’s just one script and you’re done.

API notes are good and I could follow everything after spending a bit of time reading.
It’s quite long but there’s nothing unnecessary there.

The network topology APl seems really powerful.

Was this inspired by AWS Lambda? (Yes!)

The interface is pretty. I like the purple. But seriously, the design is good. It’s easy to
use.

The instructions [for performing user-testing] you’ve written are clear.

Chapter E User testing notes

Bibliography

[11 Dan Abramov. Redux: A Predictable State Container for JS Apps. 2019. URL: https: //
redux. js.org (visited on 13th June 2019).

[2] Agendaless Consulting. Supervisor: AProcess Control System.2019. URL: http: //supervisord.
org (visited on 14th June 2019).

[3] Airbnb, Inc. Polyglot.js. 2019. URL: http: //airbnb.io/polyglot . js (visited on
14th June 2019).

[4] Almende B.V. vis.js - A dynamic, browser based visualization library. 2017. URL: https :
//visjs.org (visited on 14th June 2019).

[5] Amazon Web Services, Inc. Amazon EC2 Pricing. 2019. URL: https : / /aws . amazon .
com/ec2/pricing/on-demand (visited on 8th June 2019).

[6] Amazon Web Services, Inc. AWS Console: AWS Lambda Functions. 2019. URL: https://eu-—
west—1.console.aws.amazon.com/lambda (visited on 10th June 2019).

[71 Amazon Web Services, Inc. AWS Console: CloudWatch. 2019. URL: https://eu—-west—
1l.console.aws.amazon.com/cloudwatch (visited on 10th June 2019).

[8] Amazon Web Services, Inc. AWS Lambda. 2019. URL: https : //aws . amazon . com/
lambda (visited on 10th June 2019).

[9] Amazon Web Services, Inc. AWS Lambda Documentation. 2019. URL: https : //docs .
aws.amazon.com/lambda (visited on 10th June 2019).

[10] Amazon Web Services, Inc. AWS Lambda Runtimes. 2019. URL: https://docs . aws .
amazon.com/lambda/latest/dg/lambda-runtimes.html (visited on10thJune
2019).

[111 Amazon Web Services, Inc. Custom AWS Lambda Runtimes. 2019. URL: https://docs.
aws.amazon.com/lambda/latest/dg/runtimes—-custom.html (visited on
10th June 2019).

[12] Jim Armstrong. Get to Know Docker Desktop. 2018. URL: https://blog.docker.com/
2018/09/get-to-know—docker—desktop (visited on 4th Feb. 2019).

[13] Bas Buursma and Ives van Hoorne. CodeSandbox: Online Code Editor Tailored for Web
Application Development. 2019. URL: https: //codesandbox. io (visited on 22nd Jan.
2019).

[14] Cambridge University Press. Meaning ofdiorama in English.2019. URL: https: //dictionary.
cambridge.org/dictionary/english/diorama (visited on 3rd June 2019).

119

https://redux.js.org
https://redux.js.org
http://supervisord.org
http://supervisord.org
http://airbnb.io/polyglot.js
https://visjs.org
https://visjs.org
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://eu-west-1.console.aws.amazon.com/lambda
https://eu-west-1.console.aws.amazon.com/lambda
https://eu-west-1.console.aws.amazon.com/cloudwatch
https://eu-west-1.console.aws.amazon.com/cloudwatch
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://blog.docker.com/2018/09/get-to-know-docker-desktop
https://blog.docker.com/2018/09/get-to-know-docker-desktop
https://codesandbox.io
https://dictionary.cambridge.org/dictionary/english/diorama
https://dictionary.cambridge.org/dictionary/english/diorama

[15] Canonical Ltd. Ubuntu: The leading operating system for PCs, loT devices, servers and the
cloud. 2019. URL: https://www.ubuntu. com (visited on 8th June 2019).

[16] Arnaud Casteigts. “JBotSim: a Tool for Fast Prototyping of Distributed Algorithms in Dy-
namic Networks”. In: SIMUTools ’15: Proceedings of the 8th International Conference on
Simulation Tools and Techniques. Ed. by Georgios Theodoropoulos, Gary Tan Soon Huat
and Claudia Szabo. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering). Brussels, Belgium: ICST, Aug. 2015.

[17] Arnaud Casteigts. JBotSim Project documentation. 2015. URL: https://jbotsim.io/
javadoc/1.0.0/index.html?overview—summary.html (visited on 10th June
2019).

[18] Arnaud Casteigts. The JBotSim Library. 2015. URL: https:// jbotsim. io (visited on
10th June 2019).

[19] Codeanywhere Inc. Codeanywhere - Cross Platform Cloud IDE. 2019. URL: https : / /
codeanywhere. com (visited on 22nd Jan. 2019).

[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani et al. “Dynamo: Amazon’s Highly
Available Key-value Store”. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles. Ed. by Thomas C. Bressoud and Marinus Frans Kaashoek. ACM
SIGOPS. New York, NY, USA: ACM, Oct. 2007, pp. 205 -220.

[21] Hoa Do. Network Embedded Systems: Reliable Broadcast (et al.) Slides for university lecture
course.2007.URL: https://ti.tuwien.ac.at/ecs/teaching/courses/nes/
slides/hoa_do_reliablebc_final.pdf (visited on 8th May 2019).

[22] Docker Inc. About images, containers, and storage drivers. 2017. URL: https: / /docs.
docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers
(visited on 9th Feb. 2019).

[23] Docker Inc. Develop with Docker. 2019. URL: https://docs.docker.com/develop
(visited on 9th Feb. 2019).

[24] Docker Inc. Develop with Docker Engine SDKs and API. 2019. URL: https : / / docs .
docker.com/develop/sdk (visited on 3rd June 2019).

[25] Docker Inc. Docker SDK for Python. 2019. URL: https://docker—py.readthedocs.
io/en/stable (visited on 12th June 2019).

[26] Docker Inc. Networking overview.2019. URL: https://docs.docker.com/network
(visited on Tth Feb. 2019).

[27] Docker Inc. View logs for a container or service. 2019. URL: https : / /docs . docker .
com/config/containers/logging (visited on 9th Feb. 2019).

[28] DockerInc. Whatis a Container.2018. URL: https://www.docker.com/resources/
what—-container (visited on 25th Jan. 2019).

[29] Docker Inc. Why Docker? 2018. URL: https : / / www . docker . com/ why — docker
(visited on 24th Jan. 2019).

[30] IsaacEldridge. What Is Container Orchestration? 2018. URL: https://blog.newrelic.
com/engineering/container—-orchestration—-explainedvisitedon 4th Feb.
2019).

120 Bibliography

https://www.ubuntu.com
https://jbotsim.io/javadoc/1.0.0/index.html?overview-summary.html
https://jbotsim.io/javadoc/1.0.0/index.html?overview-summary.html
https://jbotsim.io
https://codeanywhere.com
https://codeanywhere.com
https://ti.tuwien.ac.at/ecs/teaching/courses/nes/slides/hoa_do_reliablebc_final.pdf
https://ti.tuwien.ac.at/ecs/teaching/courses/nes/slides/hoa_do_reliablebc_final.pdf
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers
https://docs.docker.com/develop
https://docs.docker.com/develop/sdk
https://docs.docker.com/develop/sdk
https://docker-py.readthedocs.io/en/stable
https://docker-py.readthedocs.io/en/stable
https://docs.docker.com/network
https://docs.docker.com/config/containers/logging
https://docs.docker.com/config/containers/logging
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/why-docker
https://blog.newrelic.com/engineering/container-orchestration-explained
https://blog.newrelic.com/engineering/container-orchestration-explained

Kayhan Erciyes. Distributed Graph Algorithms for Computer Networks. London: Springer,
2013.1SBN: 978144715173. pOI: https://doi.org/10.1007/978-1-4471-5173~
9.

Johannes Ewald, Sean Larkin, Kees Kluskens and Tobias Koppers. webpack. 2019. URL:
https://webpack. js.org (visited on 14th June 2019).

Facebook Inc. React — A JavaScript library for building user interfaces. 2019. URL: https :
//reactjs.org (visited on 13th June 2019).

Elliot Forbes. UDP Client and Server Tutorialin Python.2017.URL: https: //tutorialedge.

net/python/udp-client-server-python (visited on 9th Feb. 2019).

Google. Google Compute Engine Pricing. 2019. URL: https://cloud.google.com/
compute/pricing (visited on 8th June 2019).

Lukasz Guminski. Orchestrate Containers for Development with Docker Compose. 2018.
URL: https : / /blog . codeship . com/ orchestrate - containers - for -
development—-with—docker—compose (visited on 4th Feb. 2019).

Howard Hamilton. Distributed Algorithm. Notes for university course: "Introduction to
Operating Systems". 2007. URL: http : / /www2 . cs . uregina . ca/~hamilton/
courses/330/notes/distributed/distributed. html (visited on 23rd Jan.
2019).

Oded Har-Tal. A Simulator for Self-Stabilizing Distributed Algorithms. Student’s final-year
BSc project. 2000. URL: https://www.cs.bgu.ac.il/~projects/projects/
odedha/html/ (visited on 8th May 2019).

Oded Har-Tal. A Simulator for Self-Stabilizing Distributed Algorithms: Project Presentation.
Presentation slides for student’s final-year BSc project. 2000. URL: https://www.cCs.
bgu.ac.il/~projects/projects/odedha/html/final . ppt (visited on
9th May 2019).

Marijn Haverbeke. CodeMirror. 2019. URL: https : / / codemirror . net (visited on
14th June 2019).

Hotjar Ltd. Hotjar - Heatmaps, Visitor Recordings, Conversion Funnels, Form Analytics, Feed-
back Polls and Surveys in One Platform. 2019. URL: https://www.hot jar . com (visited
on 15th June 2019).

James Hrisho. React-Ace. 2017. URL: http : / / securingsincity . github . io/
react—ace (visited on 14th June 2019).

Imperial College London DoC Computing Support Group. DoC’s Private laa$S Cloud Service.
2019. URL: https://www.doc.ic.ac.uk/csg/services/cloud (visited on
8th June 2019).

Matt Johnson. Moment.js. 2019. URL: https: / /moment js . com (visited on 14th June
2019).

Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, 2008.

Insup Lee. Introduction to Distributed Systems. Slides for university lecture course. 2017. URL:
https://www.cis.upenn.edu/~lee/07cis505/Lec/lec—chl-DistSys—
v4 .pdf (visited on 4th Feb. 2019).

Bibliography

121

https://doi.org/https://doi.org/10.1007/978-1-4471-5173-9
https://doi.org/https://doi.org/10.1007/978-1-4471-5173-9
https://webpack.js.org
https://reactjs.org
https://reactjs.org
https://tutorialedge.net/python/udp-client-server-python
https://tutorialedge.net/python/udp-client-server-python
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
https://blog.codeship.com/orchestrate-containers-for-development-with-docker-compose
https://blog.codeship.com/orchestrate-containers-for-development-with-docker-compose
http://www2.cs.uregina.ca/~hamilton/courses/330/notes/distributed/distributed.html
http://www2.cs.uregina.ca/~hamilton/courses/330/notes/distributed/distributed.html
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/final.ppt
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/final.ppt
https://codemirror.net
https://www.hotjar.com
http://securingsincity.github.io/react-ace
http://securingsincity.github.io/react-ace
https://www.doc.ic.ac.uk/csg/services/cloud
https://momentjs.com
https://www.cis.upenn.edu/~lee/07cis505/Lec/lec-ch1-DistSys-v4.pdf
https://www.cis.upenn.edu/~lee/07cis505/Lec/lec-ch1-DistSys-v4.pdf

[47] Filipe Manco, Costin Lupu, Florian Schmidt et al. “My VM is Lighter (and Safer) than your
Container”. In: Proceedings of the Twenty-Sixth ACM Symposium on Operating Systems
Principles. Ed. by Haibo Chen, Lidong Zhou, Lorenzo Alvisi and Peter Chen. ACM SIGOPS.
New York, NY, USA: ACM, Oct. 2017, pp. 218 -233.

[48] Partha Sarathi Mandal. Distributed Algorithms. Slides for university lecture course. 2016. URL:
http://www.iitg.ac.in/gkd/aie/slide/Distributed%$20Algorithm-
PSM. pdf (visited on 23rd Jan. 2019).

[49] Ellis Michael. Distributed Systems Labs and Framework. Code repository for DSLabs project.
2018. URL: https://github.com/emichael/dslabs (visited on 10th May 2019).

[50] Ellis Michael, Doug Woos, Thomas Anderson, Michael D. Ernst and Zachary Tatlock. “Teach-
ing Rigorous Distributed Systems With Efficient Model Checking”. In: Proceedings of the
Fourteenth EuroSys Conference 2019. Ed. by George Candea, Robbert van Renesse and
Christof Fetzer. ACM SIGOPS. New York, NY, USA: ACM, Mar. 2019.

[51] Microsoft. Linux Virtual Machines Pricing. 2019. URL: https : //azure .microsoft .
com/en—-gb/pricing/details /virtual —machines / linux (visited on
8th June 2019).

[52] Microsoft. Monaco Editor. 2019. URL: https://microsoft .github.io/monaco—
editor (visited on 14th June 2019).

[53] Alberto Montresor. Distributed Algorithms: Reliable Broadcast. Slides for university lecture
course. 2016. URL: http://disi.unitn.it/~montreso/ds/handouts /04—
rb.pdf (visited on 8th May 2019).

[54] Mozilla Corporation and Amazon Web Services, Inc. Ace - The High Performance Code Editor
For The Web. 2019. URL: https://ace.c9. io (visited on 14th June 2019).

[55] Neoreason. Repl.it. 2018. URL: https://repl. it (visited on 22nd Jan. 2019).

[56] Oracle. Stack Overflow Developer Survey Results 2019 (Developers’ Primary Operating Sys-
tems).2019.URL: https://www.virtualbox.org/wiki/End-user_documentation
(visited on 8th June 2019).

[57] Oracle. VirtualBox: End-user documentation. 2019. URL: https://www.virtualbox.
org/wiki/End-user_documentation (visited on 8th June 2019).

[58] Severin Perez. Writing Flexible Code with the Single Responsibility Principle: SOLID Prin-
ciples and Maintainable Code. 2018. URL: https://medium. com/@severinperez/
writing—-flexible-code-with-the-single-responsibility-principle-
b71c4£3£883f (visited on 13th June 2019).

[59] Sergey Pimenov. Metro Ul CSS. 2018. URL: https : / /metroui . org . ua (visited on
13th June 2019).

[60] Pusher Ltd. Channels Protocol. 2019. URL: https: //pusher.com/docs/channels/

library_auth_reference/pusher-websockets—protocol #events (vis-
ited on 10th June 2019).

[61] React Training. React Router: Declarative Routing for React.js. 2019. URL: https : / /
reacttraining.com/react-router (visited on 14th June 2019).

[62] Red Hat, Inc. Ansible is Simple IT Automation. 2019. URL: https: //www.ansible.com
(visited on 14th June 2019).

122 Bibliography

http://www.iitg.ac.in/gkd/aie/slide/Distributed%20Algorithm-PSM.pdf
http://www.iitg.ac.in/gkd/aie/slide/Distributed%20Algorithm-PSM.pdf
https://github.com/emichael/dslabs
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux
https://microsoft.github.io/monaco-editor
https://microsoft.github.io/monaco-editor
http://disi.unitn.it/~montreso/ds/handouts/04-rb.pdf
http://disi.unitn.it/~montreso/ds/handouts/04-rb.pdf
https://ace.c9.io
https://repl.it
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-b71c4f3f883f
https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-b71c4f3f883f
https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-b71c4f3f883f
https://metroui.org.ua
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol#events
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol#events
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://www.ansible.com

Red Hat, Inc. Ansible: Windows Frequently Asked Questions. 2019. URL: https://docs.
ansible.com/ansible/latest/user_guide/windows_faqg.html (visited
on 8th June 2019).

Guido van Rossum, Barry Warsaw and Nick Coghlan. PEP 8 - Style Guide for Python Code.
2001. URL: https://www.python.org/dev/peps/pep—-0008 (visited on 30th May
2019).

Markus Siemens. TinyDB. 2019. URL: https : / /tinydb . readthedocs . io/en/
latest (visited on 10th June 2019).

TETCOS. NetSim Brochure. 2017. URL: https://tetcos.com/downloads/NetSim_
Brochure.pdf (visited on 24th Jan. 2019).

TETCOS. NetSim Standard. 2018. URL: https://tetcos.com/netsim-std.html
(visited on 25th Jan. 2019).

The Tornado Authors. Tornado Web Server. 2019. URL: https : / /www . tornadoweb .
org/en/stable (visited on 10th June 2019).

Tiga. redux-polyglot. 2018. URL: https : / / www . npmijs . com/ package / redux —
polyglot (visited on 14th June 2019).

Travis Cl, GmbH. Travis C! - Test and Deploy Your Code with Confidence. 2019. URL: http:
//travis—ci.org (visited on 14th June 2019).

Michael Trier and Sebastian Thiel. GitPython Documentation.2015. URL: https: //gitpython.
readthedocs.io/en/stable (visited on 12th June 2019).

Doug Woos. Oddity. Code repository for Oddity project. 2019. URL: https://github.
com/uwplse/oddity (visited on 10th June 2019).

Bibliography 123

https://docs.ansible.com/ansible/latest/user_guide/windows_faq.html
https://docs.ansible.com/ansible/latest/user_guide/windows_faq.html
https://www.python.org/dev/peps/pep-0008
https://tinydb.readthedocs.io/en/latest
https://tinydb.readthedocs.io/en/latest
https://tetcos.com/downloads/NetSim_Brochure.pdf
https://tetcos.com/downloads/NetSim_Brochure.pdf
https://tetcos.com/netsim-std.html
https://www.tornadoweb.org/en/stable
https://www.tornadoweb.org/en/stable
https://www.npmjs.com/package/redux-polyglot
https://www.npmjs.com/package/redux-polyglot
http://travis-ci.org
http://travis-ci.org
https://gitpython.readthedocs.io/en/stable
https://gitpython.readthedocs.io/en/stable
https://github.com/uwplse/oddity
https://github.com/uwplse/oddity

Bibliography 125

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Objectives
	1.2 Contributions

	2 Distributed Algorithms
	2.1 Network topology

	3 Related Work
	3.1 A Simulator for Self-Stabilizing Distributed Algorithms
	3.2 JBotSim
	3.3 DSLabs
	3.4 Container orchestration: Docker
	3.5 Network simulators: TETCOS NetSim
	3.6 Online integrated development environments (IDEs)
	3.6.1 Codeanywhere
	3.6.2 Repl.it

	3.7 Serverless/FaaS: AWS Lambda
	3.8 Summary of related work

	4 Software Design
	4.1 Overview
	4.2 Goals of the software package
	4.2.1 Use by an educator: Leroy's user journey
	4.2.2 Use by a learner: Stacey's user journey

	4.3 Technical representation of concepts in distributed algorithms
	4.4 Programming interface
	4.4.1 Node program API
	4.4.2 Network topology schema
	4.4.3 User events interface

	4.5 Web user interface
	4.5.1 Main elements
	4.5.2 Programs explorer
	4.5.3 Program editor
	4.5.4 Network topology editor
	4.5.5 Advanced configuration
	4.5.6 Simulation

	4.6 Concluding remarks

	5 Proof-of-concept: Diorama
	5.1 Aims for the proof-of-concept
	5.2 Overview of product
	5.2.1 Gallery

	5.3 Web service architecture
	5.4 Back-end: implementing programs, nodes and networks with Docker
	5.4.1 Node program images and containers
	5.4.2 Networking nodes

	5.5 Back-end: Main WebSocket server
	5.5.1 Using WebSocket messages
	5.5.2 Storing data persistently
	5.5.3 Interacting with Docker Engine
	5.5.4 Fetching node program code
	5.5.5 Handling Docker container messages: node logger server

	5.6 Front-end:React web application
	5.6.1 State management
	5.6.2 Page routing
	5.6.3 User event scheduling
	5.6.4 Use of selected third-party libraries

	5.7 Installing and running Diorama

	6 Evaluation
	6.1 Supported functionality
	6.2 Usability
	6.2.1 User testing
	6.2.2 Comparison to directly using Docker
	6.2.3 Conclusion

	6.3 Portability
	6.3.1 The web interface
	6.3.2 The server
	6.3.3 The installation tool
	6.3.4 Conclusion

	6.4 Extensibility
	6.4.1 Node program runtimes
	6.4.2 Network topology definition mechanisms
	6.4.3 Front end localisation

	7 Conclusion
	7.1 Future work

	A Example network topology code in JSON
	B Installation guide
	B.1 Pre-made images
	B.2 For local VMs
	B.2.1 Pre-requisites
	B.2.2 Deploying

	C Guide for test users
	D User testing node programs
	E User testing notes
	E.1 ``Matt''
	E.2 ``Nick"
	E.3 ``Alan"
	E.4 ``Gordon"
	E.5 ``Amy"

	Bibliography

